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1. Summary of the significant work accomplished

Bright Incoherent Solitons
Self-consistent modal theory

The self-consistent modal, theory was developed by our group as an alternative way to describe in-
coherent solitons in non-instantaneous nonlinear media (Phys. Rev. Lett., vol. 79, pp. 4990, 1997).
Unlike the coherent density approach which is by nature more appropriate for dynamical evolution
(under arbitrary initial conditions), the modal theory is better suited in identifying incoherent soli-
tons, their range of existence, and coherence properties. This method relies on the idea that every
incoherent spatial soliton must be a combination of the modes of its own self-induced waveguide. The
total intensity of this soliton is the sum of all the modal intensities. The range of existence of inco-
herent solitons in saturable media such as photorefractives was also obtained. For bright incoherent
solitons we found that the coherence increases at the low intensity tails. Similar results were obtained
numerically using the coherent density method (Opt. Lett., vol. 23. pp. 418, 1998).

Incoherent solitons in Log nonlinear saturable systems

Theoretically, incoherent spatial solitons were first identified in Log saturable nonlinear media using the
coherent density approach (Christodoulides et al, Opt. Lett. vol. 22, pp. 1080, 1997). The incoherent
bright solitons allowed in this system exhibit a Gaussian intensity profile and they exist below a certain
cut-off. It was thus natural to ask whether the self-consistent modal theory could also apply in this
system. We have found that the modes of these incoherent Gaussian solitons can be obtained in
terms of Gauss-Hermite polynomials as long as the mode-occupancy function is Poissonian. Gaussian
soliton solutions were also obtained in two dimensions. Unlike their coherent counterparts, they could
also be elliptical depending on their 2-D coherence characteristics. This implies to some extent that
incoherent spatial solitons may be more versatile in terms of shape as long as their coherence properties
are tailored. Above all, this result demonstrated that the two methods give the same results (in the
Log case) and thus they are equivalent. Their equivalence was later formally established on the basis
of Mercer’s theorem and the associated Karhunen-Loeve expansions. In fact the modal theory is also
dynamic (it can be used for dynamic evolution) unlike what we thought in the very beginning.

Coherence properies of incoherent spatial solitons in non-instantaneous Kerr media

In this part of our research, we have investigated the coherence properties of multimode incoherent
spatial solitons in non-instantaneous Kerr nonlinear media (Physical Review E, vol. 59, pp. 1193,
1999). In doing so we employed the self-consistent multimode description first developed by our group
(Phys. Rev. Lett., vol. 79, pp. 4990, 1997). In general we have found that the intensity profile of
these incoherent Kerr states is of the sech®(x/zo) type. The modal constituents or modes of these
solitons were found in terms of associated Legendre polynomial functions. The spatial width of these
incoherent states was explicitly obtained as function of the total number of modes supported and the
amount of nonlinearity provided by the system. Even more importantly, the complex coherence factor
associated with these Kerr incoherent solitons was also obtained in closed form. Our results were in
excellent agreement with previous semi-analytical results (Phys. Rev. Lett., vol. 79, pp. 4990, 1997).
One interesting aspect that emerged from this study is the fact that the coherence manifolds of such




multimoded states are ”topologically” the same depending on whether the number of modes involved
is odd or even.

Elliptic incoherent solitons in saturable nonlinear media

In Optics Letters, vol. 25, pp. 972 (2000), we identified elliptic incoherent solitons in isotropic
saturable nonlinear media. We were able to do this by employing a two-dimensional version of the
coherent density approach and by assuming that the material nonlinearity depends on the optical
intensity, I, in a way similar to that in photorefractives. We also found that, even in this case, elliptic
solitary states exist, provided that their mutual coherence function is anisotropic. Therefore these
soliton states can possibly be excited from anisotropic incoherent sources such as edge-emitting LED’s
or lasers operated below threshold. The propagation dynamics of this new class of solitons were further
studied by use of numerical simulations. Collisions between two such elliptic incoherent solitons were
also investigated. In particular, we showed that in certain collision regimes the intensity ellipse for
the two solitons rotates, whereas at the same time their centers of gravity tend to revolve around
each other. This interaction behavior is possible even though these states are launched parallel to the
propagation axis.

Coherence enhancement of spatially incoherent light beams through soliton interactions

We have shown that it is possible to enhance the spatial coherence length of a bright partially incoherent
signal beam through interactions with a coherent (or an incoherent) dark spatial soliton. We have
demonstrated that during this interaction part of the incoherent bright beam is trapped within the
dark or gray notch of the controlling soliton, thus forming a sharp intensity spike. In this region,
the correlation length increases by at least 2 orders of magnitude. Therefore, incoherent light can
be effectively cooled (its entropy being reduced) at any arbitrarily chosen point upon a partially
incoherent wave front by use of a dark spatial soliton. This is the only passive system that we know of
that exhibits an increase in both the local intensity and the local correlation distance simultaneously.
These results were presented in Optics Letters, vol. 25, pp. 826 (2000).

Incoherent dark solitons
Theory of incoherent dark solitons

The theory of incoherent dark solitons was developed soon after their observation (Phys. Rev. Lett.,
vol. 80, pp. 5113, 1998). To do so we used the self-consistent modal theory (Phys. Rev. Lett., vol.
79, pp. 4990, 1997). We have found that these dark incoherent solitons are comprised from a belt (a
continuum) of radiation modes as well as bound states. Unlike coherent dark solitons which involve
only an odd radiation mode at cut-off, the radiation belt contains both odd and even modes. Similarly,
the bound states can be odd or even. The presence of even radiation modes and even bound states
explains why the incoherent dark solitons are in fact gray. On the other hand, close inspection of their
modal structure reveals that in the dark notch, the odd modes dominate which in turn explains the
‘phase-memory effect”. The coherence properties found theoretically were in agreement with those
obtained earlier numerically (Opt. Lett., vol. 23. pp. 418, 1998). Another interesting outcome of this
study was the fact that these solutions are by no means unique. Instead they depend on the choice




of the radiation mode distribution function. This problem is equivalent to Manakov system of infinite
dimensions.

Incoherent dark solitons-phase memory effects

The dynamics of incoherent solitons in non-instantaneous nonlinear media were investigated using the
so-called coherent density approach, first developed by our group (Phys. Rev. Lett., vol. 78, pp. 646,
1997). In this approach, we assume that the input can be modeled as a continuum of sources, which are
mutually incoherent with respect to each other. We further assumme, that at the origin, the source-
fluctuations are stationary which is typically the case in statistical optics. This method was augmented
with a version of the Van Cittert-Zernike theorem in order to monitor the evolution of the coherence
during propagation. This particular version is better suited for multi-Fourier split method techniques,
used in our numerical computations. In Opt. Lett., vol. 23. pp. 418, 1998 we have simulated the
dynamics of incoherent solitons in biased photorefractive crystals. Surprisingly enough we have found
that dark incoherent quasi-solitons can form after a certain distance of propagation. In addition, these
incoherent dark solitons were found to be in fact gray. What was even more interesting was the fact
that the nonlinear system could exhibit phase memory effects in spite of the incoherency. At higher
biased voltages (higher nonlinearities), an even field depression was found to lead to doublets whereas
an odd one to triplets, pretty much the same way one would have expected from a coherent system. It
was thus natural to ask the following: (i) why are the fundamental incoherent dark solitons gray? (ii)
how can the imposed phase be remembered in the midst of random phase fluctuations? Subsequently
this behavior was observed experimentally in SBN crystals (Science, vol. 280, pp. 889, 1998). In this
experiment 1-D stripe dark (gray) solitons as well as 2-D gray vortex solitons (of topological charge
1) were observed.

Incoherent dark solitons Y-splitting and ” phase memory” effects

The properties of these incoherent dark Y-soliton doublets were further investigated in a subsequent
paper of ours (Physical Review E, vol. 59, pp. R4777, 1999) where we have also provided the first
experimental observation of this very intriguing behavior. In this paper we have shown that the
dynamics of these self-trapped entities are associated with strong ”phase-memory” effects that are
otherwise absent in the linear regime (i.e., during diffraction). The numerical simulations carried out
using the coherent density theory (developed by our group, Phys. Rev. Lett., vol. 78, pp. 646, 1997)
revealed that the Y-splitting process is rather insensitive to the degree of spatial coherence. More
specifically we found that over a wide range of parameters, the Y-splitting is approximately the same
irrespective of the degree of spatial coherence. These conclusions were successfully validated in the
experimental part of our study.

Waveguides formed by incoherent dark solitons

We have demonstrated experimentally optical guidance of coherent light beams using incoherent light
(Optics Letters, vol. 24, pp. 1160, 1999). This was made possible using either dark incoherent solitons
(previously predicted and verified by our group, Opt. Lett., vol. 23. pp. 418, 1998; Science, vol.
280, pp. 889, 1998) as well as Y-dark soliton doublets as described in the first section of this report.
In all cases, the waveguides were probed at higher wavelengths and it was found that they were in
fact single-moded. This is in agreement with our earlier predictions concerning the modal structure of




incoherent dark solitons (Phys. Rev. Lett., vol. 80, pp. 5113, 1998). These experiments suggest that
it is possible to control high-power laser beams with low-power incoherent light sources such as LEDs.

Vector solitons
Multi-component vector solitons

It has been previously shown that saturable Manakov systems can be implemented in photorefractive
crystals (Christodoulides et al, Appl. Phys. Lett., vol. 68, 1763, 1996). In principle these Manakov-
like systems can involve an arbitrary number of components as long as they are mutually incoherent.
It was also known for some time (at least in the Kerr regime) that bimodal vector solitons should also
be possible (multi-component, multi-humped), Christodoulides and Joseph, Opt. Lett. 13, pp. 93,
1988, Tratnik and Sipe, Phys. Rev. A 38, pp. 2001, 1988. These soliton states were observed for the
first time in saturable nonlinear crystals (Phys. Rev. Lett., vol. 80, pp. 4657, 1998). Their theory was
also formulated. Among other things, it was found that double and triple hump solitons are possible.
Solitons which can contain no ground state were also identified and observed.

Multi-component two-dimensional solitons carrying topological charge

In Optics Letters, vol. 25, pp. 61 (2000) we have proposed for the first time two-dimensional vector-
solitons for which each component carries a different topological charge (or “spin”). We have found
that this family is characterized by a unique triple-point phase diagram, which is completely absent
in the two-component case. Moreover, we have shown that these higher-dimensional vector structures
are composed of lower-dimensional building blocks. With soliton collisions in mind, it is clear that
the spin, the multimode nature, and the multihump structure offer new opportunities for interactions
between two-dimensional vector solitons. In this work we employed the thresholding nonlinearity and
made use of the self-consistency principle. The core ideas and findings presented are expected to
be universal. These composite solitons can provide insight into ways to realize these interactions in
materials with saturable nonlinearities. In addition, we have suggested (Physical Review Letters, vol.
84, pp. 1164, 2000) composite solitons that carry topological charge: multicomponent two-dimensional
[24+1D] vector (Manakov-like) solitons for which at least one component carries topological charge.
These multimode solitons can have a single hump or exhibit a multihump structure. The “spin”
carried by these multimode composite solitons suggests 2-D soliton interactions in which the particlelike
behavior includes spin, in addition to effective mass, linear, and angular momenta.

Observation of two-dimensional multimode solitons

In Optics Letters, vol 25, pp. 1113 (2000), we presented the first experimental observation of (2+1)-
dimensional multimode (composite) solitons. A single-hump component and a double-hump (dipole-
type) component are jointly self-trapped as a composite soliton in a biased photorefractive crystal.
We observe that the two modes self-trap when they are launched together, forming the composite
soliton. However, the stand-alone components do not trap on their own for the given value of the
nonlinearity that supports the composite soliton. This self-trapping of multimode (2+1) D solitons
opens up the possibility of distortionless image transmission through highly nonlinear self-focusing
media. If the envelope of a highly multimode soliton is modulated to contain an image (superimposed
on the intensity profile of the soliton), then this image can be transmitted through the self-focusing




medium and remain unchanged through propagation. This method is in contradistinction to image
transmission through a multimode fiber, for which the fiber modes are coherent with each other, yet
they propagate at different velocities (intermodal dispersion) and thus destroy the image.

Modulation instability
Modulation instability of incoherent beams in noninstantaneous nonlinear media

In Physical Review Letters, vol. 84, pp. 467 (2000), we demonstrated, analytically and numerically,
the existence of incoherent MI, that is, modulation instability of incoherent wave packets. Incoherent
modulation instability exists when the nonlinear index change exceeds a well-defined threshold that is
determined by the amount of incoherence. This is in a marked difference with coherent MI, since there
does not exist a similar threshold for coherent MI. The nonlinear index change is determined by the
spatial degree of coherence (angular power spectrum of the source). We used analytical and numerical
methods to study the properties of incoherent MI in a general self-focusing noninstantaneous medium.
Assuming the input beams have Lorentzian angular power spectra, we were able to find closed form
solution for incoherent MI when the nonlinearity is either of the Kerr or saturable type. We confirmed
our results with numerical simulations.

Bright spatial solitons on a partially incoherent background

We have demonstrated, both theoretically and experimentally, that stable partially coherent antidark
solitons can exist in noninstantaneous nonlinear media. We have analyzed the modal structure of
these antidark states in the case where the nonlinearity is of the Kerr type. Our analysis indicates
that these solitons always involve a set of discrete bound states as well as a continuum of odd and even
radiation modes. Experimental results and computer simulations indicate that the instability affecting
an antidark soliton can be totally eliminated by properly increasing the incoherence of its background
beam above the threshold of incoherent MI. These antidark solitons are the only known solitons that
have nonzero intensity everywhere in space yet they propagate in a stable fashion in a self-focusing
medium. We published these findings in Physical Review Letters, vol. 84, pp. 2374 (2000).

Stimulated Raman Scattering
Stimulated Raman interactions in massive wavelength-division-multiplexed systems

In addition to our work in photorefractive crystals, we have explored stimulated Raman interactions
(SRS) in massive wavelength-division-multiplexed (WDM) systems. This technology shows consider-
able promise in terms of exploiting the large spectral window offered by today’s low loss optical fibers.
In general, the SRS power exchange among WDM channels is described by a rather involved system
of differential equations of the Lotka-Volterra type. This problem is of considerable complexity since
its interconnectivity increases with the square of the number of channels involved. For example, in a
100-channel system, the number of SRS cross-talk flow streams is approximately 5000! Yet, this rather
involved problem can exhibit a closed form solution as demonstrated by our group (Optics Letters,
vol. 24, pp. 735, 1999). In this paper we found that solitary-like Raman states are possible in such
massive wavelength-division-multiplexed systems. These self-similar states can propagate undistorted
among channels at constant velocity. The evolution of these states under the action of noise and during
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collisions was also investigated. In another study (to be published in IEEE Photonics Technology Let-
ters, October issue, 1999), we have proved that spectral inversion techniques can totally eliminate SRS
cross-talk effects which are known to severely limit the performance of high capacity WDM systems.
The result was obtained by exploiting the reflection symmetries of the underlying evolution equations
and it is therefore general. This work was done in collaboration with Lucent Technologies and Tyco
Submarine Systems.
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2. Computational methodology/algorithms

The equation describing light propagation in nonlinear media is obtained by the solution of Maxwell’s
equations. By the solution of the Maxwell set the evolution of incoherent light inside a nonlinear
medium is governed by

_ ‘ . 277, 27/
¢(6U3+9 9U; L g 8U~">+%(a UJ+8U’>+F(I)UJ-=O, (1)

9z | ™oz ¥ oy oz2 | By

where U; are the so-called coherent density components, and 0, y,; are the direction angles of
each component with respect to the propagation z axis. The total intensity of the beam is obtained
from I = Z;V: |U;|?, where N is the number of coherent components. F(I) determines the change
in the refractive index caused by the material nonlinearity. For a Kerr medium F(I) = I, whereas
for saturable nonlinearities (as is the case for photorefractive crystals) F(I) = —1/(1 +I). The
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initial contribution of each component to the total intensity is given by the normalized angular power
spectrum Gy (0z,6,) of the incoherent source. Most often Gn(6s,0y) is assumed to have a Gaussian
or Lorentzian distribution.

In order to solve Egs. (1), we first discretize the (x,y) domain. We then use the split-step
Fourier method to solve the corresponding discretized equations. To demonstrate the split-step Fourier
technique, we write the equation describing each coherent component as:

%Z— = (L+ N)U, (2)

where L is a linear differential operator given by
0 0 i [ 0 0?
L=-0,——0,i—+= == +—=5
5z iay T2 (83:2 * 0y2>
and N is the nonlinear operator
N =1iF(I).

The exact solution of eq. (2) can be found, by integrating with respect to 2
U(z + h,2,y) = exp[M(L + N)]U(z,z,9). (3)

where h is the step size. According to the Cambel-Baker-Hausdorff formula, the operator on the right
hand side of this equation satisfies the following relation

exp(hL)exp(hN) = exp (h(L—i— N) + —f;—2[L,N] + ;L—;[L — N,[L,N]] +- ) ,

where the commutation operator is defined as [a,b] = ab — ba. Although in principle the operators L
and N do not commute, when the step A is small enough the higher order terms, i.e., O(h?), are small
perturbations in this expansion. Then, eq. (3) can be approximated by

U(z + h,z,y) = exp(hL) exp(hN)U (2, 2, y). (4)

Now these two operators can be applied separately into U (z,z,y) in order to propagate a single step
in 2. The action of the nonlinear operator, N, in Eq. (4) is straightforward, i.e.,

Ul(Z,.T,y) = exp(hN)U(z,x, y)

On the other hand, the linear, differential part of Eq. (4) can be solved using a two-dimensional discrete
Fourier transform

U(z + h,z,y) = exp(hL)U(z) = F~Yexp[hL(iqs,iqy)|F[U1(2, z,y)]}, (5)

where L(iq,,1g,) is the Fourier transform of operator L, and F, F~! denote the operators of the
forward and the inverse Fourier transform, respectively. This method is implemented on the CRAY
T3E at the Pittsburgh Supercomputer center. A sample code copy can be found in Appendix A.-




A Sample code
! 2D Incoherent bright solitons

! Fourier definitions and main arrays
parameter (Np=101)
parameter (NRA=1024)
parameter (Pi=3.141593)
complex SIG(NRA,Np), B(NRA)
real ak(NRA)
real Pow(NRA),B1(NRA),AU(NRA)
real WFFTC(4*NRA+15), CPY(2*NRA)

/Program Definitions/
integer StepNum, SaveNum
integer Nx, Npp

a0

real IntX,IntY,beta,h
real ThetaO, Strech, rt
real alpha2

real xw, xf

/Loop counters /
integer st, jj, ECL

O

/Save definitions /
integerx4 shb5, sh6, first_r
character*l sheetb, sheet6,list3
integer grid_ste, dat_ste

O

external fftcf, fftch

/Common blocks/
common /discr/ nx
common/components/Npp
common/discr2/IntX
common /nonl/beta
common/ArbUnits/ ThetalO, Strech
common/TotInt/rt
common/steps/h,dz
common/LogPar/alpha?2
common/widths/xw,xf
common/outr/sh5,sh6,first_r,sheet5,sheet6,1ist3

(¢ ¢

c /Constants/




¢ :-) IntX and IntY are the WHOLE interval lengths. :-)

Npp=Np
Nx=NRA
IntX=200.e0

call InitParam
printx, ’alpha2 =’, alpha2

print*,’t=’, h

stepNum=95000
grid_ste=1900
dat_ste=200
SaveNum=stepNum/grid_ste
list3=’¢e’

pow(:)=0.

B1=0.

call fftci(NRA,WFFTC)

call store_init ! Initializing the storage parameters

call getBigSignal(SIG) | ... and getting the signal - new version
call getPower(SIG,Pow)

B=Pow
call fftcf(NRA,B,B)
B=B/sqrt (real (Nx))
Bi=abs(B)
AU=0.
AU(1:nx/2)=B1(Nx/2+1:nx)
AU(nx/2+1:nx)=B1(1:nx/2)

call fillreal(Pow, AU,IntX,0,dz)
call getak(ak)

write(*,*) ’Initializing FFT...’
Print*, ’Good Luck !!!’

! The external loop using the (E)xternal (C)ounter (L)oop  SavelNum

do 105 ECL = 1,SaveNum
c :-)  The first half step

do 45 jj=1,Np
call fftcf (NRA,SIG(:,jj),SIG(:,jj),WFFIC,CPY)
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45

call dispersion(SIG(:,jj),h/2.,2k)

call fftcb(NRA,SIG(:,3]j),SIG(:,3]j) ,WFFTC,CPY)
continue

call Power (SIG,Pow)

call nonlinearity(SIG,h,Pow,Np)

do 65 st=2,grid_ste

| /Action / The main portion of the Difr.- Nonl. loop, grid_ste

85

35

105

O 0O 0O 0

do 85 jj= 1, Np ! The component loop

call fftcf(NRA,SIG(:,jj),SIG(:,jj),WFFTC,CPY)
call dispersion(SIG(:,jj),h,ak)

call fftcb(NRA,SIG(:,jj),SIG(:,jj),WFFTC,CPY)
continue

call Power (SIG,Pow)
call nonlinearity(SIG,h,Pow,Np)

continue
The last half step

do 35 jj=1,Np ! the component loop

call fftcf(NRA,SIG(:,jj),SIG(:,jj),WFFTC,CPY)
call dispersion(SIG(:,jj),h/2.,ak)
call fftcb(NRA,SIG(:,jj),SIG(:,]jj),WFFTC,CPY)
continue
call Power(SIG, Pow)
B=Pow
call fftcf(NRA,B,B)
B=B/sqrt (real (Nx))
Bl=abs(B)
AU=0.
AU(1:nx/2)=B1(Nx/2+1:nx)
AU(nx/2+1:nx)=B1(1:nx/2)
call fillreal (Pow,AU,IntX,ECL*grid_ste,dz)

continue
stop
end

=) im) im) i) ;) im) i) o)
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subroutine dispersion(b,d,ak)

=) (-:

-—-- Variable declarations -----—-

O 0o o0 o0

common /discr/ nx

integer nx

complex b(nx)

real ak(nx)

complex ¢

real d I d is the step size

c=cmplx(0.,1.)

--- calculation of the dispersion
b=(b/sqrt(real(nx)))*cexp(cxd*ak)
return
end

O O

subroutine getak(ak)

=) (-:

---- Variable declarations ------

O 0O o0 o0 0

parameter (Pi=3.141593)
common /discr/ nx
common/discr2/IntX
integer nx

real IntX

real ak(nx)

real dkx
real kx
integer nx2,1
integer kx2c

nx2=nx/2+1
dkx=2.e0%Pi/IntX

--- Begin nested loops to calculate the frequency distribution

O o o0

do 67 i=1,nx
if (i <= nx2) kx2 = (i-1)
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67

60

if (i > nx2) kx2 = (-nx - 1 + i)
kx=real (kx2) *dkx
ak(i)=((-5.e-1)*(kx**2 ))

continue

return

end

subroutine nonlinearity(b,d,pow,Npp)
common /discr/ nx
integer nx,Npp
common /nonl/beta
real beta

common /TotInt/rt
real rt

complex b(nx,Npp)
real pow(nx)

real d

real nonlin(nx)
integer i

complex ¢

c=cmplx(0.,1.)

nonlin=(beta)*(1.+rt)/(pow+i.)
nonlin=nonlin*d

do 60 i=1, Npp
b(:,i)=b(:,i)*cexp(c*nonlin(:))
continue

return

end

subroutine fillreal (a,B1,IntX,rec,step)
common/discr/nx

integer nx,rec

real a(nx), Bil(nx),IntX
common/outr/sh5,sh6,first_r,sheet5,sheet6,list3
common/TotInt/rt

integer*4 first_r, shb, shé

character*l sheet5,sheet6,list3
characterx10 alfabet

character*8 filename

integer ii

real rt,x,step

real field, fmax




open(unit=29,file=’m’//list3//’.dat’,status=’UNKNDWN’,
$position=’APPEND’)
fmax=0.e0
do 225 mx=nx/2-20, nx/2+20
field=a(mx)
if (field.ge.fmax) fmax=field
225 continue
print*, fmax
write(29,16) real(rec)*step/l.e-4,fmax
close(unit=29)

16 format (£10.5,£f10.5)
C fmax=rt
alfabet=’1234567890’
Cr———m e BEGIN--======————————— C
c
if (first_r.eq.0) then
first_r=1
goto 101
end if
if (sh6.1t.9) then
sh6=sh6+1
sheet6=alfabet (sh6:sh6)
else :
sheet6="0’
sh6=0
if (sh5.1t.9)then
shb=shb+1
sheetb=alfabet (sh5:shb)
else

print*, ’I can not save that many files’

C

C=======END IF SHEET3=========C
end if

C

C======END IF SHEET4==========(C
end if

¢ / saving the INTENSITY distrubution as a grid file /

101 filename = ’i’//list3//sheet5//sheet6//’ .dat’
open(unit=31, file=filename, stapus=’unknown’)
print*,’writing ’, filename

do 122 ii=nx/2, nx
x=-IntX/2.+real(ii-1)*IntX/real (nx)
write(31,*) x, a(ii)

122 continue

close(unit=31)
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'
'
'
'

filename = ’m’//1list3//sheet5//sheet6//’ .dat’
open(unit=32, file=filename, status=’unknown’)
print*,’writing ’, filename
do ii=nx/2+1, nx

x=-IntX/2.+real (ii-1)*IntX/real (nx)
write(32,*) x, B1(ii)

end do

close(unit=32)

open(unit=71, file=’w’//1list3//’ .dat’, status=’UNKNOWN’,
$position=’APPEND’)

write(71,10) a(nx/2-39:nx/2+40)
format (80£10.5)

close(unit=71)

open(unit=71, file=’s’//1list3//’.dat’, status=’UNKNOWN’,
$position=’APPEND’)

write(71,10) B1(nx/2+1:nx/2+80)

close(unit=71)

return
end

subroutine store_init
common/outr/sh5, sh6, first_r, sheetb,sheet6,list3

integer*4 sh5, sh6, first_r
character*l sheet5, sheet6,list3

shb=0
sh6=0
first_r=0
sheetb=’0’
sheet6="0’
return
end

subroutine getBigSignal(data)
common/components/Npp
common/discr/nx
common/discr2/IntX

integer Nx,Npp
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common/ArbUnits/ ThetaO, Strech
common/TotInt/rt
common/widths/xw,xf

real ThetaO, Strech, rt

complex data(nx,Npp)

real xw, xf

complex ¢

real xste, IntX

real x, ampl,fi

integer i,jcomp I NC is the number of components in x and y
integer itx | <—— counters for ThetaX and ThetaY
real p

real thetaX
real InThX, dThX
real rt, rHat, RGN ! Intensity normalization
real sum ,suml
real pow,fiO, a0,al,pi

| a0 is the radius of the supergaussian background beam
real fx, ftx ! dummy arguments for the functions below
£ (fx)=exp(-0.5%((£x/(70.%xw))**6))

' f(£x)=(2./(exp(fx/6.)+exp(-£x/6.)))**32

I £(£x)=2./ (exp(fx/xw)+exp (-fx/xw))
GN(ftx)=exp (- (ftx**2 )/Thetal**2)

Print*, ’Getting the signal ...’
Ic
o

c=cmplx(0.,1.)
pi=3.141593
suml1=0.
£i0=0.
a0=(3.25e~1)*IntX
al=(4.5e-1)*IntX
xste=IntX/real (nx-1)
print*, ’xw =’, XW

I printx, ’rt = ', rt

InThX=Strech*Thetal
If (Npp.ne.1) then ! incoherent case
dThX=(2.*InThX) /real (Npp-1)
sum=0.
do 41 i=1, Npp

p=—InThX+real(i-1)*dThX
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20

32

sum=sum+GN (p)

print*, ’GN = ’, GN(p), p
continue
print*, ’ sum = ’, sum
rHat = (rt/sum)
print*, ’rhat = ...’, rhat
else ! coherent case
InThX=0.; dThX=0.;rhat=rt;
end if
jcomp=1 | Initialization of the component counter

do 32 itx=1,Npp
ThetaX = -InThX+dThX*real(itx-1)

Print*, ’ThetaX, ThetaY ’, ThetaX, ThetaY
RGN=sqrt (rHat*GN(ThetaX))

suml=suml+RGN**2 ! suml is being used for energy check only

do 20 i=1,Nx
x=-IntX/2.e0 +(real(i-1))*xste

ampl=RGN*f (x)

Getting the phase of the dark beam (s)  (-:
fi=ThetaX*x

data(i,jcomp)=ampl*cexp(c*fi)

continue
continue

call fillgrid(data(:,jcomp))
jcomp=jcomp+1
continue
printx*,’suml=’, suml
return

subroutine spectrum(a,b)
real a(nx)

common /discr/nx
integer nx,i

complex b(nx)

17




do i =1, nx
b(nx)=a(nx)
end do

return

subroutine InitParam
parameter (Pi=3.141593)
common/ArbUnits/ Thetal, Strech
common/TotInt/rt
common/steps/h,dz
common/LogPar/ alpha2
common/nonl/beta
common/widths/xw,xf
real Theta0O, Strech, rt,dz ! ThetaO is the width of Int. Distr.
real alpha?2
real xw,xf
real x0, h, 1lng,Ld,LDi,ratio,iratio

! lng is the crystal lengthh in mikrometers

Strech determines the half interval

width for thetaX and thetaY. InThX = Stech*ThetaO.

ThetaO is in degrees. All distance are in mikrometers.

rt is the ratio between the beam intensity and the background intensity

real lambda, nO
lambda=0.5145
n0=2.35

x0=10.

xw=1.

xf=0.

Theta0=0.55 | degrees

Strech=2.7

rt=10.

beta=-37.
Transformation of Theta0 in radians and in a. u.
In fact the normalized value of ThetaO is the V parameter
that occurs in the logarithmic paper

Theta0 =(4.*Pi*Pi*x0*Theta0*n0)/(lambda*360.)

print*, ’Thetal = ’, thetal
alpha2=ThetaO#*2+1. ! The incoherence parameter in normalised units
lng=1.et+4 ! 1 cm in mikrons

dz=1ng/95000.

18




Ld=(n0%2.%Pi/lambda)* (x0**2) ! the coherent difraction length

! since the equation is normalized to it
Ldi=Ld/sqrt(alpha2) ! The incoherent diffraction length
ratio=dz/Ld
iratio=dz/Ldi | The fraction of the ’incoherent difraction length

if (iratio.gt.0.025) then
print*, ’your step is too big’, h, iratio
end if
h=ratio
print*, ’h, Ld, ratio,Ldi,iratio ="'
print*, h, Ld, ratio, Ldi, iratio

printx, ’alpha2 = ’, alpha2
return
end

subroutine getPower(data, PW)
common/components/Npp
common/discr/nx

integer nx,Npp

complex data(nx,Npp)

real PW(nx)

integer comp,i

PW(:)=0.
do comp=1,Npp
PW(:) = PW(:)+cabs(data(:,comp))**2
end do
return
end

subroutine Power(data, PW)
common/components/Npp
common/discr/nx

integer nx,Npp

complex data(nx,Npp)

real PW(nx)

integer comp,i

PW(:)=0.
data=data/sqrt(real(nx))

19




do comp=1,Npp
PW(:) = PW(:)+cabs(data(:,comp))**2
end do
return
end

=) =) =) =) im) ie) i)
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Abstract

This thesis investigates the dynamical and soliton-like behavior of spatially-partially
incoherent light beams in non-instantaneous nonlinear materials. Self-trapping of
incoherent beams and their coherence properties are studied in great detail. Two
complimentary approaches are developed in order to explain the observed incoherent
self-focusing behavior in biased photorefractive media; namely the coherent density
approach and the self-consistent incoherent multimode method.

It is shown that under appropriate initial conditions, bright as well as dark-
like incoherent solitons are possible in saturable nonlinear media. Our numerical
simulations have demonstrated that the coherence properties of these beams are
signi cantly affected by the self-trapping process. More speci cally, in the case
of bright beams, we have found that the coherence length remains approximately
constant around the center of the beam, whereas it increases at the margins. An
exact (one/two dimensional) Gaussian solution was also obtained in the case where

the nonlinearity is of the logarithmic type. These incoherent Gaussian solitons can




exist as long as their spatial width is appropriately related to the strength of the
nonlinearity and the width of the angular power spectrum of the incoherent source.
Moreover, two dimensional incoherent solitons can be elliptical or circular depending
on whether the angular power spectrum of the incoherent source is symmetric or
not.

Our analysis has demonstrated that dark incoherent solitons are possible only
if a w-phase shift is initially imposed on the wave front, and that they are in fact
gray. In this case, the coherence length has been found to be higher within the dark
notch, with a depression at the center. These dark soliton entities involve radiation
modes as well as bound states. Depending on the initial conditions, an even or an
odd number of incoherent dark-like structures can be obtained in a self-defocusing
enviromﬁent. It was found that over a wide range of parameters, the Y-splitting is
approximately the same irrespective of spatial coherence. It is important to note
that the behavior of bright/dark incoherent solitons is fundamentally different from
that of their coherent counterparts. For example, unlike a coherent gray soliton,
an incoherent dark soliton does not exhibit a transverse velocity in spite of its
grayness. Furthermore, it is shown that the evolution of incoherent dark solitons in
non-instantaneous nonlinear media is associated with strong phase-memory effects

which are otherwise absent in the linear regime.




Chapter 1

Introduction

Solitons represent ubiquitous entities in the genéral eld of nonlinear science. Thus
far, they have been successfully identi ed in several branches of physics, such as for
example hydrodynamics, nonlinear optics, plasma and solid state physics, magma
ow and high energy physics [1],[2]. By de nition, solitons are stationary solutions
to nonlinear dispersive partial differential equations which also retain their identity
after a collision event. Losely speaking, the term can also be used in conjuction with
self-trapped wave-packets which are described by non-integrable systems where the
outcome of a collision is typically more involved.
Within the discipline of nonlinear optics, solitons are typically subdivided into
two basic categories: spatial and spatio-temporal solitons [3]. In the case of spatio-

temporal solitons, perhaps the best known example is the nonlinear Schroedinger




soliton which occurs in optical bers [4]. Fiber solitons, which may play a crucial role
in tomorrow s high-speed ber optic networks, have been intensively investigated
in the last two decades at both the experimental and theoretical level [5]. Other
types of spatio-temporal solitons can also be mentioned. These include for example,
self-induced-transparency solitons, three-wave mixing and Raman solitons, ampli er
solitons [3] as well as Bragg or gap solitons [6].

An optical beam naturally tends to broaden during propagation in a homogenous
medium. This broadening can occur in time, in space, or in both. In the temporal
domain, the broadening is due to chromatic dispersion where each frequency com-
ponent of the pulse (wave-packet) bears different phase velocities. On the other
hand, in the spatial domain the broadening is due to diffraction which is similar to
dispersion. A spatial beam can be viewed as a linear superposition of plane waves
(akin to frequency components of a pulse) all having the same wavenumber, yet each
propagating at a different angle, let say o, with respect to the propagation axis. As
for temporal pulses, each plane-wave component accumulates a different phase, since
its propagation constant is proportional to cos(a). This results in phase building
differences between each spatial frequency and thus the beam diffracts. In general,
narrower beams have broader plane-wave specta and diverge faster. Waveguiding is
a commonly used method to eliminate diffraction. When the interference between

total internal re ections from the boundaries of a waveguide is constructive, the




beam gets trapped inside the waveguide thus forming a guided mode .

An astonishing possibility to counteract diffraction effect manifests itself when
the material is nonlinear, as rst suggested by Chiao, Garmire and Townes [7].
While diffraction causes the spatial beam to spread and decrease in amplitude, the
nonlinear effects tend to make the beam steepen and become narrower. In the
right situation, these opposing effects will complement each other, leaving the beam
propagating without any distortion. As a matter of fact, the optical beam creates its
own waveguide as it travels through the material. Thus a balance between diffraction
and nonlinearity is reached and as a result the beam remains localized and preserves
its shape forming a spatial soliton .

It is interesting to note, that the rst solitons to be investigated in the eld
of nonlinear optics were in fact spatial solitons. Shortly after the discovery of the
laser, Chiao, Garmire and Townes suggested the possibility of self-trapped optical
beams or solitons in nonlinear Kerr media [7]. In this case, the self-trapping of such
a needle of light in the bulk of a nonlinear médium is made possible by coun-
teracting the linear process of diffraction through the lensing effect of self-focusing
[8],[9]- Like their spatio-temporal counterparts, spatial solitons also show consider-
able promise in terms of practical applications. Several applications, ranging from

all-optical switches to dynamic optical interconnects and routers may be envisioned,




operating at strategic locations in a high-speed optical network [10],[11]. Until re-
cently, however, all efforts aimed to harness this potential were met with failure.
The reason behind this difficulty is primarily twofold. First of all, the observation
of Kerr spatial solitons always requires exceedingly high power levels [12]. This is
because the nonlinear index change in this case is proportional to the light inten-
sity. For example, a soliton of approximately 10 microns in diameter, will require
more than 200 kWatts, if it is to be observed say in a highly transparent glass
medium. This situation often becomes further complicated when other nonlinear
processes are invited in (because of high power) such as stimulated Raman and
Brillouin scattering as well as two-photon absorption which tend to spoil the soli-
ton itself [12]. Moreover, because of these high power requirements, lasers can only
be used under pulsed conditions. The second reason behind this difficulty is even
more fundamental. More speci cally, Kerr solitons in two transverse dimensions
are highly unstable since they will either catastrophically collapse or break up in
multiple laments [13],[14]. Thus far, bright Kerr solitons were only observed in
one-dimensional con gurations Whe‘re slab waveguides have been used to compen-
sate for the other dimension [{10],[11]. This explains why two-dimensional spatial
solitons have remained elusive for the last thirty years or so.

This picture totally changed when it was rst predicted that spatial solitons may




in fact be possible in biased photorefractive crystals [15],{16]. At the time, photore-
fractives have been traditionally regarded as the material of choice for real time
holography, phase conjugation and optical data storage [17], [18]. Nevertheless, any
notion of solitons in this material system was entirely unheard of. Shortly after,
the rst successful observation of what are by now better known as quasi-steady-
state photorefractive spatial solitons has been reported in strontium barium niobate
(SBN) crystals [19],[20]. As their name implies, these solitons occur in transient,
i.e. before the space charge eld settles down. Even more importantly, these soliton
states were found to be stable or robust in both transverse dimensions and they were
observed at extremely low power levels , i.e. microwatts. Stability of two dimen-
sional self-trapping is due to the fact that the nonlinearity happens to be saturating
which means that the induced index change can not exceed a maximum value. In
turn, the run-away interaction that gives rise to catastrophic collapse in Kerr
media can be fully arrested since the induced waveguide eventually becomes wider.
As expected, the event revived considerable interest within the optics community
in the hope that spatial solitons may now be within reach [21},(22]. Subsequently,
the so-called steady state screening solitons have been independently predicted by
Christodoulides et al and Segev et al [23],[24] and were experimentally observed

in both one and two transverse dimensions in SBN [25},[26]. These latter entities



appear after the space charge has reached its steady-state. At the same time, photo-
voltaic spatial solitons were predicted [27] and observed in lithium niobate [28],[29].
In all cases, photorefractive solitons were found to be stable against spatial pertur-
bations. Apart from fundamental differences associated with the mechanism behind
their existence, what greatly distinguishes the class of photorefractive solitons from
their Kerr counterparts, is the required power level. Unlike Kerr solitons which
typically require hundreds of kWatts [10],[11],[12], photorefractive solitons can be
observed using microwatt or even lower optical power levels [19],[20]. Evidently,
there is a difference of approximately 11 orders of magnitude. Even for the newly
discovered family of chi-2 solitons [30], which exhibit stable self-trapping in both
transverse dimensions, one still has to use hundreds of kWatts. Another important
distinction, arises from the fact that photorefractive solitons can write permanent
waveguides in the bulk of a photorefractive crystal, which in turn can be used to
guide other more intense beams at less photosensitive wavelengths. In this manner,
a microwatt soliton in the blue can guide and control a 1 Watt beam at 1-1.55
micrometers, intended for telecommunication purposes [28]-[34].

Very recently, for the rst time, incoherent light was found to self-trap itself in
a biased photorefractive crystal [35],[36]. This very interesting twist of events, now
suggests that nonlinear optics no longer needs to belong to the exclusive domain of

powerful lasers. This is the rst time we know of, that incoherent light determined




the outcome of a nonlinear optics experiment. This development is expected to
have important scienti ¢ and technological implications. Furthermore, this is the
rst time in Physics that an incoherent wave-packet, that is a wave-packet whose
phase varies randomly in space and time, has been self-trapped.
This dissertation is dedicated to theoretical investigation of a number of funda-

mental issues associated with this newly discovered class of incoherent solitons.




1.1 Spatial solitons in saturable media

Photorefractive solitons are generally classi ed into three generic categories each
resulting from a different nonlinear mechanism which is essentially saturable. Sat-
uration of nonlinearity indicates that the optically induced refractive index change
can not exceed a maximum value. Saturating nonlinearities lead to more compli-
cated systems as opposed to Kerr nonlinearities. However, as mentioned before,
the presence of saturation solves the problem of instability associated with the Kerr
nonlinearity in (2+1)D. In what follow we provide an overview of the photorefractive

soliton types by giving special emphasis to the screening solitons.

1.1.1 Screening solitons

Screening solitons occur in biased photorefractive media after the space charge eld
has reached steady state [23],[24]. Basically the principle behind screening solitons is
rather simple. At relatively high bias eld strengths, the current in the photorefrac-
tive sample is dominated by drift whereas the rather weak diffusion component can
be neglected. In this case, the photo excited carriers migrate in such a way that the
conductivity of the photdrefractive crystal becomes higher in the illuminated regions
whereas is lower in the dark. As a result, the absolute value of the space charge

eld is lower (screened out) in the illuminated regions [23],(24]. In turn, through

the electrooptic or Pockels effect, the refractive index is modi ed in proportion to
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the local space-charge eld. When the proportionality coefficient is fairly large and
negative, this leads to a large index change in the dark regions, whereas the refrac-
tive index in the illuminated regions remains almost unaffected. Consequently, this
leads to a graded-index waveguide which can then support a nonlinear mode or
what is better known as a bright spatial screening soliton. Similarly, dark spatial
solitons are possible in biased photorefractives provided the polarity of the bias eld
is reversed. In this latter case, the refractive index is lower in the illuminated regions
whereas is higher within the dark notch.

Screening solitons were independently predicted by Segev et al. and Christodoulides
et al. [23],[24]. In these studies, bright, dark and gray one-dimensional spatial
screening solitons were found to be possible in biased photorefractive crystals. More-
over it was shown that for a given physical system, these states depend only on two
parameters, namely the strength of the applied bias eld Ej as well as the so-called
intensity ratio r or p, i.e. the ratio of the optical peak intensity with respect to
the dark irradiance of the crystal. The symbol r represents the maximum in-
tensity ratio of a bright soliton whereas p stands for the maximum dark intensity
ratio. Shortly after, the existence of bright screening solitons was experimentally
con rmed in SBN crystals by Segev s group [25],[26]. These solitons were found to
be stable in both one and two transverse dimensions. Concurrently, dark screening

solitons and Y-splitting gray solitons were observed in a reverse biased SBN crystal
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[32], [33],[34). The evolution equations of bright solitons were also investigated [37]
under arbitrary input conditions. In this study [37], various issues were considered
including the stability of these states, the effects arising from loss, bias and the
intensity ratio as well as the interaction forces among in-phase and out of phase
coherent solitons. In another theoretical study, the effects of diffusion on these soli-
tons were considered and it was predicted that self-bending should occur [38],(39].
This self-bending effect was later successfully veri ed [26]. The guiding properties
of the circular Waveguides permanently induced by such spatial solitons were also
studied experimentally [40], along with the rst experiments on collisions between
pairs of photorefractive solitons.

At the same time, screening solitons were also investigated by Iturbe-Castillo
et al. in Bismuth Titanium Oxide (BTO) crystals [41}. In their studies, induced
modulational instability [42] was observed as well as bright and dark solitons were
studied in biased BTO crystals [43]. A theoretical model capable of describing the
process of modulational instability in biased photorefractives was later developed
by Carvalho et al. [44]. The effects arising from the presence of optical activity
on solitons in BTO crystals were also theoretically investigated and it was found
that in fact soliton behavior in this system can only be claimed at relatively short

distances and at small intensity ratios [45],(46].
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In addition to single screening solitons, one-dimensional vector-screening soli-
tons have been predicted in crystals of appropriate symmetry [47]. Unlike their
Kerr counterparts, these solitons can now be both self-coupled or cross-coupled de-
pending on the properties of the electrooptic tensor [47]. Other studies have also
addressed vector interactions among solitons [48] as well as the possibility of ob-
serving bright-dark vector soliton pairs [49]. In a recent study, incoherently coupled
soliton pairs have also been proposed [50]. These pairs are possible provided that the
two carrier beams share the same polarization and are mutually incoherent. They
can appear in bright-bright, dark-dark as well as in dark-bright con gurations. The
existence of such incoherent soliton pairs has been recently con rmed experimentally
[51],[52],[53]. In these experiments, bright-bright and dark-bright pairs have been
observed in accord with theory. In the same spirit, incoherent collisions among soli-
tons have been investigated in both one and two transverse dimensions [54],[55],(56].
These latter experiments have opened up a new avenue in terms of controlling the
interaction forces between solitons.

Another important development in this area includes the rst experimental
demonstration of self-trapping in InP:Fe [57). This material is compatible with
existing semiconductor technologies and moreover it has the potential to respond

much faster than any of the previously studied oxides (it responds approximately
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1000 times faster at the same intensity). Evidently, this may have important ap-
plications in high-speed interconnects and in all-optical switching. Photorefractive
solitons in semiconductors are possible in spite of the very small electrooptic coeffi-
cient in these materials. This is due to a large enhancement of the space-charge eld
in the region of the optical beam which may be up to 10 times the applied eld. The
enhancement results from a resonance which occurs when the dark generation rate
of electrons is equal to the photo-generation rate of holes. This effect was observed
by Chauvet et al.[57],[58]. An alternative way to achieve such desirable fast response

times is also possible by employing photorefractive solitons of high intensity [59).

1.1.2 Quasi-steady-state solitons

Unlike steady-state screening solitons, quasi-steady-state solitons can only exist in
transienf, i.e. before the space charge eld has reached equilibrium. Interestingly
enough, quasi-steady-state solitons were the rst to be predicted [15],[16] and ob-
served in biased photorefractives [19],[20]. These solitons can only be observed
during a time window which may be seconds or minutes depending on the material
and the absolute beam intensity. The theory of quasi-steady-state solitons in biased
photorefractives was rst developed by Segev et al.[15],[16]. In this formalism, the
self-trapping effect arises from the phase coupling among the spatial spectral com-

ponents of an optical beam. This phase coupling mechanism is modelled using the
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two-wave mixing response function [17],[18] under external bias conditions. The evo-
lution equation describing these solitons is then obtained by truncating to rst order
the Taylor series expansion of the two-wave mixing response function. By doing so,
the end result in turn suggests that in this case the light induced nonlinear index
change now follows the spatial derivatives of the beam intensity distribution. Along
these lines several results have been predicted. First, the solitons in this case (which
can be either Gaussian or hyperbolic-secant like) are independent of the absolute
beam intensity as long as the light intensity is well above the dark irradiance of the
crystal [15],[16]. Second, these solitons are only possible when the bias eld strength
lies within a certain range of values. These properties were veri ed experimentally
in strontium barium niobate [19],[20]. In this experiment, stable propagation of two
dimensional solitons was observed which was also independent of the beam inten-
sity. Subsequent experimental efforts conducted in the quasi-steady-state regime
have also demonstrated one-dimensional solitons as well as planar dark and vortex
solitons [19],[20],[60]. On the theoretical side, the stability of these class of solitons
has been investigated [61] and the dynamical evolution of Gaussian beams in biased
photorefractives has been solved exactly [62]. In [62], spatial compression and self-
bending was found'to be possible when the bias eld exceeds the allowed range of
values necessary to establish a Gaussian soliton. This behavior is in agreement with

the experimental results reported thus far [19],[20].
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In another recent study it has been also shown that quasi-steady-state solitons
can be employed to write permanent waveguides intended for other beams at
less photosensitive wavelengths. Even though these waveguides were established
at microwatt levels, they were in fact able to guide other intense beams (in the
bulk of the crystal) at power levels of approximately 1 Watt [31]. Note that no
other method exists today that is capable of establishing waveguides in the bulk of
a material. Alternative methods currently employed in Integrated Optics such as
sputtering, liquid phase and molecular beam epitaxy, ion implantat.ion, diffusion and
ion exchange are extremely involved and expensive and can only provide waveguides

at the surface of a substrate.

1.1.83 Photovoltaic solitons

Photovoltaic solitons are possible in photorefractive media with appreciable photo-
voltaic coefficients under steady-state conditions. These solitons were rst predicted
by Valley et al. [27] and observed by Tayé et al. [28]. Unlike screening solitons or
quasi-steady-state solitons, photovoltaic solitons do not require an external bias.
Instead, in this case, the required nonlinear index change is set up by a strong pho-
tovoltaic current. So far, the theory of photovoltaic solitons has been developed in
one transverse dimension [27] and by appropriately incorporating the photovoltaic

nonlinearity into the wave equation. By doing so, explicit soliton solutions (dark
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and bright) have been obtained that resemble those in Kerr saturable media [63].

From the mathematical point of view, the evolution of 1-D photovoltaic spatial soli-

tons is governed by an equation very similar to that of photorefractive screening

solitons where this time nonlinearity constant is proportional to the photovoltaic
eld constant [27].

The rst experimental observation of photovoltaic solitons was carried out in
lithium niobate by Taya et al [28]. This crystal exhibits a negative nonlinéar index
change and it is thus suited for dark solitons. In these experiments dark and gray
solitons have been observed and the tensorial nature of the underlying photovoltaic
effect also became evident. In a subsequent experiment, Y-junction waveguides have
been formed by utilizing higher-order dark soliton splitting. These Y-junctions were
then used to guide and split other more intense beams at higher wavelengths [29].

Recently, 2-D photovoltaic vortex solitons were successfully generated [64]. This
is very surprising because the photovoltaic current in lithium niobate is inherently
a polar current, i.e. the electrons are accelerated along the ferroelectric axis only;
Nevertheless, the 2-D nature of the optical beam enforces a two-dimensional current

and in turn a 2-D space-charge eld capable of supporting 2-D spatial solitons.
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1.2 Incoherent solitons

In a recent experimental study, Mitchell et al. have reported for the rst time self-
trapping of partially spatially incoherent light in a biased SBN crystal [35],[36]. As
previously noted, this represents an important discovery not only in the area of pho-
torefractives but in the entire eld of Optics in general. The experiment was carried
out using laser light after a rotating diffuser. After the diffuser, the incoherent light
beam (which can be considered to be quasi-thermal), was then launched in a biased
SBN specimen. In the absence of any external bias, the input beam (30 micrometers
in diameter) was found to expand to 102 microns after 6 millimeters of propagation.
Instead, at a bias voltage of 550 Volts the incoherent beam remained invariant by
counteracting diffraction effects. At even higher voltages, spatial compression was
found to occur. These results clearly demonstrate that incoherent self-trapping ef-
fects were present and to some extent they suggest that spatial incoherent solitons
may be possible. Of all the processes discussed in this section, this latter one used

to be the least understood.
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Chapter 2

Background

In a recent experiment [35], it has been demonstrated that incoherent light can
self-trap itself in photorefractives. More speci cally, incoherent light was found
to self-trap in a biased Strontium Barium Niobate (SBN:75) photorefractive crys-
tal. This observation was made possible through the nonlinearity associated with
photorefractive screening solitons. This nonlinearity has two properties which are
critical for the self-trapping of incoherent light beams: Finite response time which
can be much longer than the phase uctuation time across the incoherent beam; sat-
uration which is essential to create a multimoded waveguide. Therefore, to further
investigate the incoherent self-trapping process, it is important to understand the
photorefractive nonlinearity and coherent screening solitons. In this chapter we will

rst give a brief explanation of the photorefractive effect. We will later formulate
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the theory of coherent photorefractive solitons and discuss the properties of partially

spatially incoherent beams.

2.1 Photorefractive nonlinearity

The optical properties of photorefractive (PR) crystals have been a topic of consid-
erable interest in the last three decades or so. The photorefractive effect was rst
discovered accidentally in Lithium Niobate (LiNbOs) in 1966 by Ashkin et al. [65].
Since then, it has been observed in many electro-optic crystals such as Barium Ti-
tanate (BaTi0s), Strontium Barium Niobate (SBN, SrsBa1_sNby0s), Potéssium
Niobate (K NbO3), Bismuth Silicon Oxide (BSO, Biz SiOy), Bismuth Titanium
Oxide (BTO, Bi;12Ti0q), and several other materials such as polymers. Tradition-
ally, photorefractive crystals have been employed in various applications including
real-time holography, phase conjugation, and optical data storage [17],(18]. How-
ever, the prediction of optical solitons in photorefractive media [15], [16] has opened
up a new exciting avenue for different applications.

In general, self-trapped optical beams or solitons are possible when the process
of diffraction is exactly balanced by nonlinear self-focusing. In the case of biased
photorefractives, the nonlinearity arises from the dominant drift conduction term.
Cul;rently the most widely accepted model describing the photorefractive effect is
the one initially suggested by Vinetskii and Kukhtarev in 1975 [66],(67]. In this
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model, a PR material involves both donor and acceptor centers. All donor impurities
are assumed to be identical and have exactly the same energy level somewhere in
the middle of the band gap. These neutral donor impurities Np can be ionized
(resulting to electron donation) by absorbing photons of sufficient energy. In turn
the ionized ones are capable of recapturing the donated photoelectrons. On the
other hand, the acceptor impurities N4 (whose density is typically much smaller
than that of the donors) are assumed to be fully ionized at all times. Therefore,
they only participate indirectly in the PR effect by providing charge neutrality when
no optical illumination is present. In the absence of light, the ionized donor density
N} is taken to be equal to the acceptor density N4. Nonuniform illumination of
the material with light of suitable wavelength ionizes the donors and generates free
carriers (either electrons or holes, or both). The free electrons, generated in the
bright regions of the incident optical beam, diffuse and drift away. As a result, a
charge redistribution between illuminated and dark areas is induced. This space-
charge density is associated, through Gauss s law, to a low frequency space-charge
electric eld which, in turn, causes a refractive index pattern via the linear electro-
optic Pockels effect. In other words, non-uniform illumination of the photorefractive
medium results in a non-uniform change in the refractive index. The local change
in the refractive index is given by A(1/n?);; = rijkEk where E, are space charge

electric eld components and r;; are the linear electro-optic coefficients [17],[18].
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Even though the electro-optic tensor involves a number of independent coeflicients,

this number decreases as the symmetry increases.

2.2 Steady-state photorefractive screening solitons

In this section, we develop the theory of steady-state photorefractive screening soli-
tons. Under steady-state conditions, the evolution equations of one dimensional
spatial optical beams in photorefractive media are obtained. As an example, we
will consider screening solitons in a SBN photorefractive crystal where most of the

experiments have been carried out.

2.2.1 Space-charge eld

To study the propagation of 1-D planar spatial beams in this material system, we
consider a standard con guration where the optical beam propagates along the z axis
and it is allowed to diffract only along the x coordinate. The optical c-axis of the SBN
crystal is assumed to be oriented in the z direction. Furthermore, an external electric

eld is applied along the same coordinate. In this case, the perturbed extraordinary
refractive index along the optical ¢ axis is given by (n.)? = n? — nirs B, where 733
is the electro-optic coefficient involved, n. is the unperturbed extraordinary index

of refraction, and E,. is the total electric eld. The induced space-charge eld E,.
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can be obtained from the Kuktarev-Vinetskii equations [66],(67],(68]. For a one

dimensional con guration and under steady-state conditions these equations take

the following form:

valNEn = s;(I+ L) (Np — N§) (2.1)
J = constant (2.2)
KBT on
= Eyp+——— 2.3
Jeu<ns+eax) (2.3)
OE,. _ e +
or —6061' (NA Np + n) 24)

The rst equation is the charge recombination equation and the second one is the
continuity equation. The third one shows that the current density J is the sum of
the drift and diffusion terms. Moreover, I = I (z,z2) is the power density of the
optical beam and is proportional to the square of the absolute magnitude optical
eld envelope. 7y is the carrier recombination rate, s; is the photo-excitation cross
section, e is the electron charge, u is the electron mobility, n is the free electron
density, and K is Boltzmann constant; T is the absolute temperature, €€, is the
" total permittivity, Np is the donor concentration, Ny is the trap density, N}, is the
ionized donor density, Ip is the dark irradiance of the crystal. Furthermore, let us
assume that the optical intensity can remain constant at the tails far away from the
beam, i.e. I(z — :Eoo,z) = I. It can thén be shown that the space-charge eld

is also constant at the tails, i.e., E,(z — +00,z) = E;. When the beam is well
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con ned within the crystal s width W, the constant value Ey is approximately equal
to V/W where V is the external bias voltage. As usual, we assume that the donor
concentration and the trap density is much bigger than the free electron density
and that the ionized donor density is approximately the same as the trap density.
Under these assumptions, the steady-state space charge eld can be obtained from

the above Kuktarev-Vinetskii transport equations and given by [24],

(Io + 13) €06, 0E,.| KgT 1 0OI
E,. = E 1 ~ = 2.5
“(I+1) eNy Oz e (I+1)0x (2:5)
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When the bias voltage V is high, the space-charge eld E,. is dominated by drift
and typically in photorefractive crystals |(€0€, /eN4) OF,./0z| < 1. In that case,

the space-charge eld is approximately given by [23],[24]

(Ioo + Id)

) 2.6)

Esc ~ EO

2.2.2 Evolution equation

Starting from Maxwell s equations and by employing standard procedures, we nd

that the envelope of the optical eld obeys the following differential equation [23],[24]:

0p  10° ko 4 _
2_5; + ﬂ—a—xj - —2- (nerggEsc) (15 =0. (2.7)

In this equation, ¢ is a slowly varying envelope. In turn, the optical eld

£ = 2¢ (z, z) exp (ikz)
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is expressed in terms of this envelope. k = (2m/Ao)n. and )¢ is the free-space
wavelength. Considering only the dominant drift process, the evolution equation for
the envelope ¢ can be obtained by substituting Eq. 2.6 into Eq. 2.7. For simplicity,
this equation can be further simpli ed by adopting normalized coordinates and
quantities, i.e. £ = z/ (kz?), s =z /2o, p = (27701,1/71,3)1/2 U where z, is an arbitrary
spatial scale and the beam intensity has been scaled with respect to dark irradiance.

In that case, the normalized evolution equation is given by

OU 10°U 1
7,52_-+-2--6—‘S7—,3(1+p)‘1—+|—UFU—0 (28)

where p = I/I; and the nonlinearity constant § is proportional to effective elec-
trooptic coefficient of the photorefractive crystal and the external bias eld, ie.
B = (koxo)® nirszEy/2. Note that B can be positive or negative depending on the
polarity of the bias eld E;. As it has been shown [24], bright, dark and gray
one-dimensional spatial screening solitons can be possible in biased photorefractive
crystals. Moreover it was shown that for a given physical system, these states de-
pend only on two parameters, namely the strength of the applied bias eld Ep as
well as the so-called intensity ratio r or p, i.e. the ratio of the optical peak intensity
with respect to the dark irradiance of the crystal. The symbol 7 represents the
maximum intensity ratio of a bright soliton whereas p stands for the maximum dark
intensity ratio. Bright and dark soliton beam pro les are shown in Fig.2.1(a) and
(b). The dependence of the normalized spatial intensity FWHM of these beams
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respect to 7 or p in units of /%, is given Fig. Fig.2.1(c) and (d). Here Zo is a nor-
malization parameter and given by T = 1/ (kon24/r33E/2). It is important to note
that, bright soliton states fequire positive bias, Ey > 0, whereas the dark and gray
soliton states are possible only when the bias eld is negative or the photorefractive
material is reverse biased, Ey < 0.

Photorefractive solitons require very low powers, as low as 1 pWatt, because the
nonlinear refractive index change depends on the I/I; ratio rather than the optical
intensity I. In this way, even if the total power is very low, a very strong nonlin-
earity can be induced. Moreover, the nonlinearity can be adjusted by changing the
external bias voltage thus introducing an extra free parameter to vary the size of
the soliton beam. In addition, the nonlinear response of photorefractive materials is
wavelength dependent. This means that, one can use a soliton induced waveguide
to control powerful beams at wavelengths at which the material is less photosensi-
tive. Moreover, the response time of the photorefractive material can change from
nanoseconds to hours depending on the optical intensity. For example, the response
time is in the order of seconds for a typical soliton formation in a SBN crystal. In

fact, this property is one of the requirements for incoherent soliton formation.
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Figure 2.1: Field profiles of (a) bright and (b) dark screening spatial solitons.

Normalized intensity full-width half-maximum versus intensity ratio for (c) bright and

(b) dark screening solitons.
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2.3 Spatially incoherent light and coherence length

For a coherent beam, the phases at all points of the beam varies in unison with
time. On the other hand, the phases at different points acrosé an incoherent beam
vary in a statistical manner. This randomly changing phase distribution creates an
intensity pattern known as speckle. Speckle size is an indication of the degree of
coherence for a spatially partially incoherent beam. The diffraction characteristics
of a beam are related to the speckle size or the degree of coherence: the smaller
the speckles, the larger the diffraction. In other words, beams of higher coherence
diffract less. When the beam is fully coherent, every point of the beam is well
correlated with all other points. Therefore, the coherence length across a coherent
beam is in nite. Each point of a fully incoherent beam , however, correlates only
with itself and it is totally uncorrelated with other and thus the correlation length
is zero. Between these two extreme cases, is the class of partially incoherent beams.
Most of the sources in nature fall in this category. In this case, each point across
the beam correlétes with other points. This nite correlation distance is called
coherence length.

The coherence of a source can be described by using a time averaged temporal
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correlation between the electric eld at different points across the beam. This prop-

erty is given by a normalized spatial complex coherence function [69],[70] u(z1, z2)

(E(z1) E*(22)) (2.9)
I(z))I(z2)

where (.) denotes the time average and I is the optical beam intensity. In general,

M12($1,$2) =

the complex coherence function can be an arbitrary function of both z; and .
Thus, it is often more convenient to describe the coherence properties of an optical

beam through a coherence length I, which is de ned as follows:

() = [ luna(@,8)F d6 (2.10)

To understand the complex coherence function and its relation to optical intensity,
consider two point sources, let say 1 and 2. The optical eld, F, at an observation
point will be superposition of the elds, E; and E,, from these two points. In
this case the total eld at the observation point will be given by E = E; + Ej.
Furthermore, if we assume that the eld is stationary, i.e. the coherence function
only depends on the separation between these two points 7 = r; — 71 but not
their placement, Eq.2.9 can be written as p,5(7) = |, ()] exp [idyp (1)]. Here,
0 < i (7)] €1 and ¢y, (1) = arg[uy, (1)) is a time averaged phase difference
between two elds. Therefore the time averaged total intensity can be given as

1
Iy = 5 (EE*) = I + I + 2 (I [)"/* Re [y, (7)) (2.11)

= L+1+2 (-’112)1/2 |1 ()| cos [$12 (7))
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where I;and I, are the intensities that would be produced at the observation point by
two elds independently. Eq. 2.11 shows that, depending on the degree of coherence
between two elds, different intensity patterns are formed. For example if the beams
are completely coherent among each other, i.e.|uy, (7)| = 1, a fringe pattern with a
maximum contrast will be observed. When the beames are completely uncorrelated,
i.e. |po (7)] = 0, no fringe pattern will be observed. This latter case corresponds to
complete incoherence. i.e. there is no de nite phase relationship between the waves
arriving at the observation point from two different point sources. When these
beams are partially correlated, 0 < |p;5 (7)] < 1, the contrast of the fringe pattern
will change accordingly . This latter case corresponds to partially incoherent beams
[69],[70].

The time averaged intensity of a partially spatially incoherent beam is different
than its instantaneous intensity. If we observe the intensity of an incoherent light
at any time, we will see a speckled intensity pattern as shown in Fig.2.2. What
our eyes or a slow responding material see, in fact, will be an average of these
randomly changing speckled patterns. If the averaging time is long enough, the
resulting intensity will be smooth as shown in Fig.2.2. In this latter case, the third
term (interference term) in Eq. 2.11 averages out to zero since the nonlinearity re-
sponds slower than the rate of random phase changes. Therefore, the total intensity

that nonlinearity sees will be the summation of contributing intensities from each

30




individual point, i.e. I = I; + I.
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Figure 2.2: Illustration of the temporal avaraging of many instantaneous speckled
patterns due to the noninstantaneous response of nonlinearity.
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Chapter 3

Theory of incoherent beam

propagation in nonlinear media

In this chapter, the coherent density approach, describing propagation and self-
focusing of partially spatially-incoherent light beams in nonlinear media is devel-
oped. It is shown that lthis process is effectively governed by an in nite set of coupled
nonlinear Schrodinger-like equations provided that they are initially appropriately
weighted with respect to the incpherent angular power spectrum of the source. The
particular case of spatially partially incoherent beam propagation in biased photore-
fractive media is considered in detail. Numerical simulations indicate that spatial
compression as well as self-trapped states are possible under appropriate conditions.

Our results are in good agreement with recent experimental observations.
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3.1 Introduction

Optical self-focusing has been a subject of considerable interest in the last three
decades or so. Over the years, this process has been systematically investigated in
all states of matter with the aid of laser sources [12]. Thus far, several physical
systems have been identi ed that can lead to optical self-trapping. These include
for example, x® or Kerr-like media [10], [11], the x(® family of materials [71],[72]
as well as the class of photorefractives [19]-(25],(73]. Highly relevant to this topic
is of course the very existence of optical spatial solitons [8],[9]. These latter en-
tities can occur provided that diffraction effects are exactly balanced by optical
self-trapping. At this point, it may be fair to say that both coherent self-focusing as
well as the coherent excitation of solitons are by now in principle well understood.
In a very recent study however, a successful observation of incoherent self-trapping
has been reported for the rst time [35]. In this experiment, partially spatially in-
coherent light was found to self-trap in a biased strontium barium niobate (SBN)
photorefractive crystal. Apart from its possible scienti ¢ and technological impli-
cations, this observation [35] in turn poses a new fundamental challenge. More
speci cally, a theory of incoherent self-focusing and possibly of incoherent solitons
now needs to be developed. Unlike their coherent beam counterparts, for which the
phase at all points varies in unison with time, the phases at different points across

an incoherent beam vary in an uncorrelated manner [69],{70]. This introduces an
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important new element in the nonlinear theory of self-focusing. Even though the
properties of speckle-inhomogeneous elds have been considered in the past in con-
nection with optical phase conjugation [74], the propagation behavior of partially
incoherent (multimode) beams in nonlinear media has not yet been explored.

In this chapter, a theory of incoherent self-focusing in non-instantaneous non-
linear media, and in particular in biased photorefractive crystals is presented. We
consider nonlinear media with response times much bigger than the characteristic
phase uctuation time across the optical beam which in turn will only experience
the time-averaged intensity. In the case of stationary spatial source uctuations, we
show that this process can be effectively described by means of an in nite set of
coupled nonlinear Schrodinger-like equations provided that they are appropriately
weighted with respect to the source incoherent angular power spectrum. Our nu-
merical computations demonstrate that spatial compression as well as self-trapped
states are possible under appropriate conditions. In these cases, self-trapping can be
intuitively understood as fusion of multi-particles. Pertinent examples are provided
to further elucidate this behavior. A possible soliton solution to this system is also

presented.
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3.2 Coherent density approach

To start, let us consider for example a SBN crystal with its optical c-axis oriented
in the x direction. Let us also assume that the optical beam propagates along the
z axis and it is allowed to diffract only along the x direction. For simplicity, we
limit our analysis to one transverse dimension (z) and we assume uniformity in
y. Furthermore, an external bias electric eld is applied along x (i.e., the c-axis),
in which case the perturbed extraordinary refractive index is given by [23],[24],[59]
(nl )2 = n2 — nira3 B, where n, is the unperturbed index of refraction, r3; is the
electrooptic coefficient involved, and E. is the static space charge eld in this pho-
torefractive crystal. Under strong bias conditions (0.2 —4 kV/cm) and for relatively
broad bright-like beam con gurations ( 25Xo/n.), the steady-state space charge
eld is approximately given by (23], [24],[59] Ese = Eoly[Is+ I(z,2)]”" as shown
in Chapter 2. Here I = I(z, z) is the power density of the optical beam, I is the
so-called dark irradiance of the crystal and Ej is the value of the space charge eld
at z — +o0o. If the spatial extent of the optical wave involved is much less than the
z—width W of the crystal, then for a constant bias voltage V', Ey is approximately
given by £V/W [24]. |
Next, it is important to consider the diffraction behavior of this incoherent beam.
Let us assume, as in the experiment reported [35], that the incoherent wavefront

results from a quasi-thermal quasi-monochromatic source such as for example laser
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light after passing through a rotating diffuser [35],(70],[75]. Let the & polarized
electric eld component of the optical wave be expressed in terms of a slowly varying
envelope ¢(z,z) ie. E(z,z) = Z¢(x,2)exp(ikz) where k = (2r/Xo)n.. In the
paraxial limit (k,/k < 1) and in the linear regime, the envelope ¢ is known to

evolve according to
¢z, 2) = o / dszi(kz) exp {z[kzx - (ki/Zk)z]} (3.1)
’ —00

where &)(ki) is the Fourier transform of the eld right at the input, i.e. at 2 = 0.
Let the 6ptica1 eld at the origin also be written as ¢(z,z = 0) = f(z)do(x)
where f(z) is a spatial modulation function and ¢,(z) is the eld before modu-
lation which implicitly contains all the spatial statistical properties of the source.
If the source uctuations obey a stationary random process [76], then the spatial
statistical autocorrelation function of ¢,(z) is given by <¢0(x)¢3(x')> = R(z — 7).
In turn, the autocorrelation function of the source spectrum can be obtained, i.e.
<<i>o(kz)<i>3(k;)> = 216k, — k.)G(k,) where &(k,) and G(k,) are the Fourier trans-
forms of ¢, (z) and R(z) respectively and 6(z) is a delta function. Physically the real
function [76] G(k,) represents the incoherent angular power spectrum of the source.
Using the frequency convolution theorem and the fact that &(k,) is the Fourier

spectrum of the product f(z)¢y(z), one can readily derive the following result:
(B(k)&* (k) = (1/27) [ dnGm)F (ke —m)F*(K, ) (3.2)
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where F(k,) is the Fourier transform of the spatial modulation function f(z). Keep-
ing in mind that the intensity of this wave is given by I(z,z) = <|¢[2> and by

employing Eq.3.1 and 3.2 we nally obtain
2

I(a,5)= [ doGn(0) %T- [ k() explik.(@ — 02)] expl—ik2(z/2K)|  (33)

where G (6) in Eq.3.3 has been normalized for convenience, and 6 = k,/k represents
an angle (in radians) with respect to the z axis. At this point it may be useful
to make few remarks. First, the quantity in the brackets of Eq.3.3 represents in
fact the intensity pro le resulting from an otherwise coherent beam when its initial

eld pro le is f(z). Furthermore, this coherent component propagates at an
angle @ with respect to the z-axis by obeying the paraxial equation of diffraction:
i(U, + 0U,) + (1/2k)U,, = 0 where U, = 0U/0z etc. In essence, Eq.3.3 leads
to the following important conclusion: the diffraction behavior of an incoherent
beam can be effectively described by the sum of the intensity contributions from all
its coherent components provided that their eld pro les at the origin have been
appropriately scaled with respect to the incoherent angular power spectrum Gn(9),
ie. U(z,z = 0) = GY*(9)f(z). As one may anticipate, in the limit Gn(6) —
§(6), the result of Eq.3.3 reduces to that of the coherent case. Note, that similar
arguments have been previously employed in connection with incoherent imaging
[77], theory of speckle-inhomogeneous elds [74], and incoherent wave propagation
in dispersive media [78].
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Up to this point our treatment is quite general. On the other hand, when an
incoherent optical beam propagates in a slowly-responding nonlinear medium, one
should also expect that each of these coherent components or quasi-particles will be
in uenced by the nonlinearity involved. In turn, an intensity-dependent nonlinearity
will follow the incoherent (intensity) superposition of all these components. In
the particular case of a biased photorefaractive crystal, the nonlinear index change
An = (n2/2) r33Esc can then be readily incorporated into the underlying equations
of motion by following the procedure of [23], [24],(59]. By doing so and by discretizing
the diffraction integral of Eq.3.3 (i.e. § — jA#), then under steady-state conditions

we are nally led to the following in nite set of coupled nonlinear Schrédinger-like

equations:
oU; oU; 10U; ko 3 U; _
{8 +(A9)a }+2k8 27’Le7'33E01+I($’Z)—0 (34)

where I(z, z) is the intensity pro le of the incoherent beam which is given by

I(z, 2) Z \U;(z, 2)[? (3.5)

j=—00
and the discrete index j = 0,41,42,... . Effectively, Eqs.3.4 and 3.5 describe the
process of incoherent self-focusing in biased photorefractives in the limit Ag — 0.
Moreover, in these equations each coherent fragment has been scaled with respect

to I;, and at the origin we have assumed that U;(z,0) o G%z(jAG)f(a:).
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3.3 Incoherent bright photorefractive solitons

As an example let us consider a biased SBN:75 crystal. Here, the parameters
used will be very similar to those reported in [35]. In particular, let r33 = 1022
pm/V, No = 488 nm, n, = 2.3, W = 6 mm and let the length of propagation
be 6 mm. Let us also assume that the input intensity pro le as well as the in-
coherent angular power spectrum are Gaussian, i.e. f(z) = exp(—z?/2z3) and
Gn(9) = (7r1/ 290)_1 exp (—02 / 0(2,). In our numerical computations we use 201 com-
ponents (—100 < j < 100) equidistantly spanning the range +2.5 65. From our
previous discussion, the eld of each coherent component at the origin is set to be
U;(z,0) = #/2f(z) exp [-— (GAB)?/ 29(2)] where 7 is an appropriate constant which is
related to the maximum intensity ratio 7 (with respect to I) of the input incoher-
ent beam. More speci cally rr =7 ZJ: exp [— A8/ 00)2]. Equations 3.4 and 3.5 are
solved by means of standard split-step Fourier methods. The accuracy of our results
was then checked against the conservation laws of Egs. 3.4 and 3.5 and by increasing
the number of coherent components. As a rst example let us consider an incoherent
Gaussian beam with o = 18 um, in which case its input intensity FWHM is 30
pm. Moreover let the width of the source angular power spectrum be 6, = 9.56
milliradians or 0.548°. In this case, the beam linearly diffracts to a FWHM of
102 pm after 6 mm of propagation as shown in Figure 3.1. Note that if this beam

was spatially coherent, it would have diffracted to 35.4 um after 6mm, as has been
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observed in [35]. Once the crystal is appropriately biased, seli-trapping effects start
to emerge. Fig.3.2(a) depicts the intensity evolution of this beam (zo = 18 um,
6, = 0.548°) when the applied voltage is 400 V and rp = 3. After 6 mm, the beam
has developed a rectangular-like pro le with a FWHM of ~ 34.7 ym as shown in
Fig.3.2(b). Evidently self-focusing played an important role in this example even
though it was not enough to balance diffraction effects. Figure 3.3 on the other
hand shows what would happen if the bias is increased to 550 V. In this case, the
incoherent beam propagates almost undistorted and it behaves like a quasi-soliton.
In other words, all the coherent components or quasi-particles have appropriately
fused together thus producing a stationary beam. Figs.3.4 and 3.5 show intensity
evolution of two coherent fragments of this self-trapped beam at 6 =~ 0.27° and

~ 0.54° respectively. At an even higher voltage, V = 1000 V, the beam starts to
exhibit considerable spatial compression. Figure 3.6 shows that cycles of compres-
sion and expansion are now possible during propagation. At the output, ie. 2 =16
mm, its intensity FWHM is ~ 18 um. Note that behavior of this sort (including the
rectangular-like beam features of Figs.3.2 and 3.6) is consistent with previous ex-
perimental observations (In Reference [35] only the self-trapped case Was reported.
Nevertheless, rectangular-like beam behavior at low bias and beam compression at
high bias voltages has been observed as well). Moreover, had this beam (30 um

FWHM) been fully coherent, it would have disintegrated as a result of speckle noise
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instabilities. Next, let us consider what will happen at higher intensity ratios rr.
Figure 3.7 shows the propagation of an incoherent Gaussian beam wheﬁ V = 550
V, 6, = 0.548° and r; = 40. At z = 6 mm, the beam now expands from 30 pum
FWHM to 87 um. As in the coherent limit [23],[24],[59], this expansion is attributed
to the saturation of the photorefractive nonlinearity when rr > 1. In our simula-
tions the angular width 8y was also found to play an important role. Fig.3.8 depicts
the propagation of such an incoherent Gaussian beam (30 urm FWHM at the input)
when V = 550 V, 7 = 3 and §; = 0.8°. As the gure shows, the beam expands
in a rectangular-like fashion to a FWHM of 51.3 um after 6 mm of propagation.
Clearly, for f, = 0.8° a higher bias voltage is required to overcome diffraction effects

and indeed at ~ 950 V self-trapping is reestablished.

3.4 Solitary wave solution

We would also like to point out that the in nite system of coupled nonlinear partial
differential equations of Eq.3.4 does in fact admit solitary wave solutions. To obtain
such a solution we write U;(z,z) = u;(z, z) exp {’L [(jA9)2 (kz/2) —jAHk:v]} and
uj = r;/zQ(a:) exp(iuz), where Q(z) is a normalized function, ie. 0 < Q(z) < 1.

Direct substitution of these latter forms in Eq.3.4 leads to the following ordinary
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Figure 3.1: Diffraction of an incoherent Gaussian beam when its initial FWHM is
30 um, 6,=0.548°, rr=3.0.
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Figure 3.2: (a) Evolution of the normalized intensity profile resulting from an
incoherent Gaussian beam when its initial FWHM is 30 um, 6,=0.548°, r+=3.0 and
when the applied voltage is 400 V; (b) The input (dashed curve) and output at z=6 mm
(solid curve) intensities.
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Figure 3.3: (a) Evolution of the normalized intensity profile resulting from an
incoherent Gaussian beam when its initial FWHM is 30 um, 6,=0.548°, r1=3.0 and
when the applied voltage is 550 V; (b) The input (dashed curve) and output at z=6 mm
(solid curve) intensities.
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Figure 3.4: Intensity evolution of /0th component |Uio(x, ~0.27°)/ of the quasi-
soliton shown in Fig.3.3.
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Figure 3.5: Intensity evolution of 20th component |Uz(x, 0,~0.54°)) of the quasi- -
soliton shown in Fig.3.3.
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Figure 3.6: (a) Evolution of the normalized intensity profile resulting from an
incoherent Gaussian beam when its initial FWHM is 30 um, 6,=0.548°, rr=3.0 and
when the applied voltage is 1000 V; (b) The input (dashed curve) and output at z=6
mm (solid curve) intensities.
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Figure 3.7: Propagation of an incoherent Gaussian beam in a biased SBN:75 crystal
when the applied voltage is 550 V, its initial FWHM is 30 um, 6,=0.548°, rr=40.
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Figure 3.8: Propagation of an incoherent Gaussian beam in a biased SBN:75 crystal
when the applied voltage is 550 V, its initial FWHM is 30 um, 6,=0.8°, rr=3.0.
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differential equation

d*Q Q
'd? - 2,qu - (k2nzT33Eo) m =0 (36)

which is known to allow bright solitons [23],[24],(59] when Ey > 0 and
p=- (kn3r33E0/27"T) In(1+7r7) .

In Eq.3.6, rr is the total intensity ratio, i.e. rp = > ;. We would like to emphasize
j
however that physically this solitary wave solution has a limited range of applica-
bility. More speci cally the employed U; —u; transformation implies in reality that
all the coherent components propagate in parallel along 2. Thus a solitary solution
of this sort may only be applicable when 6, is quite small in which case all quasi-
particles may tend to propagate almost in parallel after fusion. In fact, the above
mentioned solution represents a generalization of the so-called incoherent coupled

photorefractive soliton pairs previously discussed in the literature [50],[34].

3.5 Conclusions

In conclusion, a theory of incoherent self-trapping in biased photorefractives has
been developed. It has been shown that this process can be effectively described by
an in nite set of coupled nonlinear Schrodinger-like equations provided they have

been initially weighted with respect to incoherent angular power spectrum of the
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source. Relevant examples have been provided. Our numerical computations were
in close agreement with recent experimental data. We wish to emphasize that our
theoretical approach applies not only to photorefractive media but also to any other
nonlinear material whose temporal response time is much bigger than the phase

uctuation time of an optical beam.
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Chapter 4

Incoherent spatial solitons in
saturable nonlinear media of the

logarithmic type

By using the coherent density approach, it is shown that partially incoherent spatial |
solitons are possible in saturable nonlinear media. This is demonstrated by means
of an exact Gaussian solution in the case where the saturable nonlinearity is of the
logarithmic type. The conditions necessary to establish these soliton states as well
as their associated characteristics are discussed in detail. Pertinent examples are

provided to further elucidate their behavior.
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4.1 Introduction

In the last chapter, a theory was developed in order to explain the observed inco-
herent self-focusing behavior in biased photorefractive media [79]. More speci cally,
it was found that this process can be effectively described by an in nite set of
nonlinear Schradinger-like equations provided that they are initially appropriately
weighted with respect to the incoherent angular power spectrum of the source. The
numerical simulations resulting from this theoretical approach [79] were found to
be in good agreement with the experimental observations of Ref. [35]. It is also
important to note that these experimental [35] and theoretical [79] investigations
have demonstrated that a stationary incoherent beam or a quasi-soliton could exist
under appropriate conditions. Nevertheless, there is no solid evidence (in terms of
an analytical solution) as to whether such incoherent solitons exist or not.

In this chapter, we show that partially incoherent spatial solitons are indeed
possible in saturable nonlinear media. This is demonstrated by means of an exact
Gaussian soliton solution in the case where the saturable nonlinearity is the loga-
rithmic type. The conditions necessary to 'establish these incoherent soliton states
as well as their associated characteristics are discussed in detail. Our analysis in-
dicates, that, for a given strength of the logarithmic nonlinearity, these solitons
exist only within a certain range of incoherent angular spectral widths. Relevant

computer simulations are provided to further elucidate their behavior.
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4.2 Theoretical formulation

Let us consider a saturable nonlinear medium, the refractive index of which varies

logarithmically with intensity I, i.e. ,
n?(I) =n2 +naln(I/L) , (4.1)

where ng is the linear refractive index of this material, n, is a positive dimensionless
coefficient associated with the strength of the nonlinearity and I; is a threshold in-
tensity. Note that a logarithmic nonlinearity of this sort has been recently employed
by Snyder and Mitchell in their study of mighty morphing spatial solitons and
bullets [80]. To avoid any unphysical singularities, we may assume that the In (1/1;)
nonlinearity results from the more realistic In (1 + I/I;) model in the limit 7 > I;.
Let us also assume that the light beam propagates along the z axis and diffracts
only in the z direction, i.e., for simplicity we are dealing with a planar incoherent
beam. Moreover, we will make the important assumption that the nonlinear ma-
terial involved responds much slower than the characteristic phase uctuation time
across the optical beam as in the case of photorefractives. As a result, the mate-
rial will experience only the time averaged intensity. Under these conditions and
by following the procedure given in the last chapter, one may then show that the

normalized intensity Iy = I/I, of this incoherent light beam obeys the following set

59




of equations:

i{g—ﬁ-+9%}+§%%—+%ln(m(x,z))f=o (4.2)
where
Iy (z,2) = 7| F(z,2,0)] do (4.3)
and at z = 0, -
F(z=0,z,0) =G (0) ¢ () - (4.4)

In the above equations, f represents the so-called coherent density, f is an angle
in radians with respect to the z axis, k = kong and ko = 27/X . Gy (0) is the
normalized angular power spectrum of the incoherent source, ¢ (z) is the input
spatial modulation function and r is an intensity ratio, that is r = max (In) .
Note that, in the last chapter, the process was described in terms of the so-called

coherent components which are in fact a discrete version of the coherent density
employed here. Let us now assume that the input intensity pro le as well as the
incoherent angular power spectrum are Gaussian, i.e., ¢, (z) = exp (—?/2z3) and
Gy (0) = (7r1/ 200)_1 exp (—92 /93). In this case, the input intensity pro le can be

obtained from Egs.4.3 and 4.4 and it is given by
In(z,2=0)=rexp (—acz/:cg) . (4.5)

For convenience, we will also employ the following dimensionless coordinates and
variables; £ = z/kx2, s = /1o, @ = kzof and § = (n2/2) (komO)Q.
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At this point let us also assume for a moment that the intensity of the inco-
herent beam remains invariant or stationary during propagation. If we let f =

Fexp (i€ Inr), we then obtain from Eqs.4.2 and 4.5

(6F 8F)  18*F .,
2{5&-+a—a~s-}+§§—ﬂSF—0 (46)

where at £ =0, F = #/2exp (—92/293) exp (—s2/2) and 7 = r7~1/20;". Equation

4.6 can now be solved using a Gaussian wavepacket solution[81], i.e.

2

F=A(exp [—-21;’—(5)-] ep{ifg©+m© -+ @)} @D

where n = s—v (£). w (€) represents the variable spot-size of the coherent density and
v (€) is the displacement of this wavepacket along the z axis. Equation 4.7 satis es
Eq. 4.6 provided that the following relations hold true: A*w = Afwy, U= a+p, ¢ =w
2w, P= —2Bv, 9= (1/2) (p* — w™? — 2Bv?) and 4= — (1/2) (4¢* + 26 — w™*) where
v= dv/d¢ etc. The initial conditions (at £ = 0) associated with theseA equations are
given by: Ay = #/2exp (—02/29[2,), wo =1, po = vo = 0 and w= 0. In that case, it

can be readily shown that
v () = a(28)sin [(26) ¢ (4.8)

and

26+1 + (26-1)
44 48

The rest of the variables A, p, g, and q can then be deduced by directly employing

w? (€) = cos [(86)"%¢] - (4.9)

the results of Eqs. 4.8 and 4.9.
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In turn, from Egs. 4.7, 4.8 and 4.9, the normalized intensity Iy can be obtained

and it is given by

2
Iy = iQT;W exp [—%] (4.10)
where
Q=w () + %xg_eg sin? [(28)/%¢] . (4.11)

Seeking a soliton solution, we must require that the intensity Iy remains station-
ary during propagation. From Eqgs. 4.5 and 4.10 it is evident that this is possible
only if @ = 1 for all values of z or {£. Combining the results of Egs. 4.9 and 4.11
we then readily obtain the condition necessary to establish a partially incoherent
spatial soliton, which is 26 — 1 = k22262, or

1
Ty = —F———m
ko\/’nz - n%&%

Therefore, given the strength of the logarithmic saturable nonlinearity n, and the

(4.12)

width of the incoherent angular power spectrum of the source 6y, Eq. 4.12 uniquely
determines the spatial width of the partially incoherent spatial soliton state that
can propagate in this material. In this case, the partially incoherent soliton beam
maintains an invariant Gaussian intensity pro le, i.e. Iy = rexp(—z?/z}), even
though the associated coherent density function f evolves considerably as a function
of € or z. In the special case where 8, — 0 or Gy (6) = 6 (6), our result corregtly

reduces to the coherent spatial soliton limit (zo = kg 'n; Y ?) previously obtained by
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Snyder and Mitchell [80]. On the other hand, Eq. 4.12 shows that as 0 increases,
the soliton width zo increases. Nevertheless, it is clear from Eq. 4.12, that there is
an upper limit for the incoherent angular spectrum width 6, above which a soliton

beam is not allowed. This upper value 8 mayx is equal to n;/ 2 /7.

4.3 Results and discussion

We will now illustrate our results by means of relevant examples. Let us consider a
logarithmically saturable nonlinear medium with ny = 2 and n; = 10~%. Moreover
let the optical wavelength \g be 0.5 pum. For this set of parameters, the maximum
source angular spectrum width 6, that can be self-trapped is fymax = 5 mrad. Let
us also assume that the angular power spectrum width 6, of the incoherent source
is g = 4.5 mrad. In this case zo ~ 18 pm and thus the intensity FWHM of this
partially-incoherent spatial soliton is ~ 30 um. Figure 4.1 shows the stationary
propagation of this soliton as obtained by numerically solving Egs. 4.2 and 4.3. In
all our computations we have used the better behaved In (1 + I/I;) nonlinearity with
an intensity ratio of one thousand (r = 10%). Note that had this same incoherent
beam been launched in a linear material (ng = 2, ny = 0) it would have diffracted
to a FWHM of ~ 90 pum after a distance of 1 cm. Fig.4.2 on the other hand, depicts
the coherent density associated with this soliton beam when 6 = 3 mrad.
Evidently, the density periodically expands and contracts during propagation
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Figure 4.1: Stationary propagation of a partially-incoherent spatial soliton when
xo=18 um, 6,54.5 mrad and n;=10-.
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Figure 4.2: Evolution of the normalized coherent density function fassociated with
the incoherent soliton shown in Fig.4.1.
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Figure 4.3: Propagation of a partially incoherent Gaussian beam in logarithmically
saturable nonlinear medium when xo=18 um, 6,=6.0 mrad.
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Figure 4.4: Propagation of a partially incoherent Gaussian beam in logarithmically
saturable nonlinear medium when x,=18 um, 6,=4.0 mrad.
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and oscillates around the center of the beam. In spite of this, the overall intensity
pro le Iy of the incoherent light beam remains stationary as long as Eq. 412 1is
satis ed. Figure 4.3 shows what would happen to this Gaussian incoherent beam if
8o = 6 mrad (6, is above the upper bound fymax = 5 mrad) provided that again
7o = 18 wm. In this case, the beam rst expands and then compresses and at
z = 1 c¢m its intensity FWHM is ~ 52 um. If 6y is, on the other hand, lower than
the that prescribed by Eq. 4.12, say 8y = 4 mrad and for o = 18 pum, then the
beam exhibits cyclic compressions and expansions as shown in Fig.4.4. Even though
our analysis does not directly apply to biased photorefractive crystals (where the
saturable nonlinearity is different), it provides valuable insight into the considerable
more complex incoherent dynamics in this material system. In fact, the scenario
depicted in Figs.4.1, 4.3 and 4.4 is quite reminiscent of the incoherent wave dynamics

previously encountered in biased photorefractives in the previous chapter [35],[79].

4.4 Conclusions

In conclusion we have shown that partially incoherent spatial solitons are possible
in saturable nonlinear media. An exact Gaussian solution was obtained in the case
where the nonlinearity is of the logarithmic type. These incoherent Gaussian solitons
can exist as long as their spatial width is appropriately interrelated with the strength
of the nonlinearity and the width of the incoherent angular power spectrum of the
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source. The behavior of these beams above and below this limit was also investigated

using computer simulations.
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Chapter 5

Multimode Incoherent Spatial
Solitons in Non-Instantaneous

Kerr Media

In this chapter, by using the self-consistent multimode approach, we show that in-
coherent solitons are possible in non-instantaneous Kerr-like nonlinear media. The
coherence characteristics of multimode incoherent spatial solitons in this material
system are investigated. Other properties of these incoherent solitons are also dis-

cussed as a function of their modal composition.
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5.1 Introduction

In Chapter 3, the coherent density approach, describing propagation and self-focusing
of partially spatially-incoherent light beams in nonlinear media is developed. In the
last chapter, this approach was found to lead to closed form solutions for logarith-
mic type of nonlinearities [82]. It has been also shown [83], that a self-consistent
multimode method can also be used to investigate incoherent soliton formation in
nonlinear materials. This latter model seeks, in a self-consistent fashion, multimode
soliton solutions whose total intensity can be obtained via intensity superposition
of all the modes guided within the nonlinearly induced waveguide. This method
is capable of identifying incoherent spatial soliton states, their range of existence
and coherence properties [83]. Another approach for describing broad incoherent
bright solitons was also suggested by Snyder and Mitchell [84]. This ray model is
to some extend related to the Vlasov transport description previously suggested by
Hasegawa. in the theory of random-phase solitons in plasmas [85], [86], [87].

It is worth noting that incoherent solitons, as viewed from the perspective of the
self-consistent modal theory, are in fact related to the so-called incoherently cou-
pled solitons in photorefractives [32]-[34],[50] or to the vector solitons in Kerr media
[88]. Within the context of incoherently coupled solitons [32]-[34],[50], Vysloukh et al

[89],[90] has shown that multi-component coupled soliton modes can be incoherently
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superimposed in weakly saturating photorefractive crystals. We would like to em-
phasize however that there is a subtle difference between self-trapping an incoherent
beam and creating a multi-component soliton. This difference is due to the statisti-
cally varying modal weights of the incoherent beam. Consider rst a situation where
self-trapping occurs from an incoherent light source. During self-trapping, the beam
continuously excites several modes of the jointly induced waveguide, established by
the time averaged intensity of the speckled beam itself. If the time averaged inten-
sity is decomposed into the modes of the induced waveguide, each mode will have a
certain coupling amount or weight. On the other hand, when multiple laser beams
are incoherently superimposed (engineering the beam pro les), the relative modal
weights are time independent and only the relative phase between each pair of modes
changes with time. As far as the crystal could tell, the two situations are exactly
the same. The difference lies in the time dependence of the mode occupancies.

In this chapter we demonstrate that incoherent spatial solitons are possible in
non-instantaneous Kerr-like media. Closed form solutions are obtained using the
self-consistent multimode approach [83]. It is shown that the intensity pro le of these
incoherent soliton states is of the sech? (z/zo) type. Moreover, our analysis indicates
that, in this case, the peak intensity and spatial width of these incoherent spatial
solitons are related to the number of allowed modes. The coherence properties of

these soliton states are investigated in detail. Relevant examples are provided.
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5.2 Self-consistent multimode approach

We consider a spatially partially-incoherent optical beam which propagates in a
nonlinear self-focusing Kerr-like medium along the z-axis. For simplicity we assume
that this beam is planar, that is, it diffracts only along z the direction. The re-
fractive index of this Kerr-like material varies linearly with optical intensity I i.e.
let n2 = n2 + nyl, where ng is the linear part of the refractive index and n; is the
nonlinear Kerr coefficient. We also make the important assumption that the nonlin-
earity responds much slower that the characteristic phase uctuation time across the
incoherent beam, so as to avoid speckle-induced lamentation instabilities [91]. In
this regime, the material will experience only the time averaged beam intensity. For
example, such noninstantaneous Kerr nonlinearities can be encountered in biased
photorefractives in the low-intensity regime, (i.e., when the so-called dark irradiance
is much larger than the intensity of the optical beam [23],[24]) or in materials with
thermal nonlinearities [92],[93]. Furthermore, let the total electric eld E of this
spatially incoherent beam be writtevn in terms of a slowly varying envelope U, that
is, let E = U exp (ikz), where the wavevector k is given by k = kono = (2m/Xo)m0
and )\ is the free-space wavelength. In this case, it can be readily shown that the

envelope U evolves according to:

oU 1 0%U kgnzf
25—;+2_g—5ﬂ?—2+_2k U=0 (5.1)
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Let us now assume that the incoherent spatial soliton in this Kerr-like medium has

a sech? (z/zo) intensity pro le, that is
I = Iysech? (z/x) (5.2)

where represents the peak intensity of the optical incoherent multimode beam and

Z is associated with its spatial extent. In this case, Eq. 5.1 takes the form

oU 182U o 9
1%4—'2-6—7]2-4-?860}1 (mMU=0 (5.3)

- In this equation we have used normalized coordinates and quantities, i.e., n =« /%o,
¢ = z/kz3, and o® = kizinslp. The incoherent spatial soliton solutions of this
equation can then be obtained by expressing the optical envelope through a super-
position of all the modes involved, that is, U o % cmu™ (n) exp if,, (€), where ¢’ are
the mode-occupancy coefficients that vary randomly with time, w]* () is the pro le
of the mth-order mode, and 3,, its phase constant. The discrete index n stands for
the total number of modes allowed in the system. By substituting this form of U

into Eq. 5.3, we obtain, for each mode, the following ordinary differential equation:

0 uy 2 2 m
o + [a sech? () — 2,3m] uy =0 . (5.4)

The mode pro les u™(n) and their phase constants 3,, can then be found by solving
Eq. 5.4. In order to nd the mode occupancy coefficients, the self-consistency of this

solution must be satis ed, i.e., the total intensity of this incoherent beam is given
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by Eq. 5.2. The self-consistency method relies on the basic concept that a soliton
itself is a mode of the self-induced (via the nonlinearity) waveguide. This was st
suggested by Askar yan [94] and later developed into a self-consistency methodology

by Snyder at al [95]-[98] as means to analyze coherent solitons.

5.3 Results and Discussion

To nd the modal structure of these multimode incoherent spatial solitons, we rst

adopt the transformation ¢ = tanh (n), in which case Eq.5.4 takes the form:

d>u™ du™ 20
_ 42 n_ n 2 m m _
(1 t ) T 2t el [a -t t2)] uy =0 . (5.5)

It can now be easily shown that, when a? = n (n + 1), where n = 1,2, ..., (an integer
determined by the amount of nonlinearity) and m = 1,2, ...,n, the allowed modes

can be expressed in terms of associated Legendre functions [99], i. e.,

uy (n) = Py (tanh(n)) (5.6)

and 3,, = m?/2, where P (z) are associated Legendre functions of the rst kind.
In general, P (z) = (1 — 22)™? g™ P, (z) /dz® where P, (z) denote Legendre poly-
nomials. The value of the integer n (associated with o? or the degree of non-
linearity) represents the number of allowed modes in the self-induced waveguide

and m the mode index for this case. Note that the lowest order mode occurs
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when m = n whereas the highest at m = 1. For a given value of n, the statis-
tically varying optical eld of the incoherent spatial soliton is given by U (n,§) o
‘Z_‘l ¢™P™ (tanh(n)) exp (im?€/2). Note that the self-consistency condition also re-
quires that the mode-occupancy coefficients also depend on the number of modes 7.

The time averaged intensity of this beam can then be evaluated from

n

(IUP)y oc I =3 (|en*) [Py (bamh(m)* (5.7)

m=1
where we made use of the fact that under incoherent excitation the time-average
of cross-interference terms among modes is zero, <ci (d )*> oc 8;;. Finally, Eq. 5.7
can be used to obtain the mode-occupancy coefficients ¢! that self-consistently lead
to the incoherent spatial soliton I = Iysech? () assumed in the very beginning of
this analysis. It proves convenient to normalize the eigenmodes in the following
fashion: @7 (n) = [@] v u™ (n) or equivalently Iy mf—:l [@m ()] = Iosech? (n).
The functional form of the normalized eigenfunctions %™ (n) is given in Appendix A.
Figure 5.1 depiéts the normalized mode pro les, 4™ (n) for a three-component (n =
3) multimode incoherent soliton whereas Fig. 5.2 for a four component structure
(n=4).

Having found closed form solutions for these spatial incoherent solitons, the
question naturally arises as to what factors contribute to their spatial FWHM (full-
width half-maximum). To answer this question one has to consider the expression

o? = n(n+1). More speci cally, since o = k3azgn.lo, then given the number of
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guided modes n, and the peak intensity o, the spatial width z can be determined.
In turn one quickly nds the following result: zo = [n(n +1)/ kgnglo]l/ % Using Eq.
5.2 and provided that n is known, the intensity FWHM of these soliton states wn,

can be calculated from w, = 1.76x, and thus

(5.8)

1.76 [n (n+1)]1/2
Wy = —— | ———

ko nolo
Note that when n = 1 ( single-mode soliton), this latter expression is in full
agreement with the results previously obtained for coherent Kerr spatial solitons
[100]. Equation 5.8 can also be written in terms of a normalized FWHM (w,/Xo)
as function of the maximum induced nonlinear index change (An = ngly), i.e.,
wn/Xo = (1.76/27) [n(n+1) / An]"/?. Figure 5.3 shows the dependence of the nor-
malized intensity FWHM of these incoherent optical solitons on An for different
values of n. This gure clearly shows that for a given nonlinear index change, the
intensity FWHM tends to increase with the number of modes involved. This should
have been anticipated since the incoherency increases with n. It is also important
to note that in Fig.5.3, the existence curves are discrete as opposed to continuum
range found in Ref. [83]. This is due to the speci ¢ sech? (x/z) intensity shape
assumed at the beginning of our analysis.

We now investigate the coherence properties of these spatial solitons. This is done
by evaluating the complex coherence factor u,, of these soliton states [69], which is
given by iy (,71+ 6) = (U (0,€)U* (0 +6,)) / [(1U @) (U (0 + 6)[F)] ", where
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Figure 5.1: Normalized mode-profiles as a function of 1 for n=3.

74




~/

iy (M) osl

Figure 5.2: Normalized mode-profiles as a function of 7 for n=4.
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Figure 5.3: Normalized intensity FWHM of Kerr-like incoherent spatial solitons
versus nonlinear index change An, forn=1, 2, ..., 6.
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6 represents the normalized distance between two points. From Eq. 5.2, and by using

the modal expansion of the optical envelope U, then for a given n, we obtain

3 azm)ay (n+6) .
pyo (4 6) = sech () sech (7 + 8) , (5.9)

where again we made use of the fact that the time-average of cross-interference terms
is zero under incoherent excitation. The complex coherence factors 5 (1,7 + 6) up
to n = 5 have been tabulated in Appendix B. When n = 1, which corresponds to
a coherent optical soliton, x,, (7,7 + 8) = 1 as should have been anticipated. This
in turn implies an in nite correlation length. As the number of modes n increases,
the coherence properties of these incoherent soliton states become mofe complicated.
Figure 5.4 provides a two-dimensional plot of ,, as a function of normalized position
n and point separation § when n = 2. As expected, y;, = 1 when§ =0 and this true
for every value of n. Note that any cut (7 =constant) of these two dimensional plots
provides the correlation (magnitude and phase) between the two points located
at n and 7 + 6. Moreover, as it is well known [69], the magnitude of the complex
coherence factor is always |p;,] < 1. In general, two points are mutually coherent if
{4, = 1 and mutually incoherent (poor correlation) if y1;, ~ 0. Figure 5.5 depicts a
cross-section of the complex coherence y,, as obtained right at the center (n = 0) of
an incoherent soliton when n = 2. In this case, ;5 (0,68) = sech(6), which implies
that correlation between the center and any other point of this soliton decreases with
6. This latter expression also demonstrates that the tails of this beam (§ — +o00)
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and the center are totally uncorrelated. Fig.5.6 on the other hand shows how a point
at the tails (at 7 = —3) correlates with the rest of the beam when again n = 2. For
example, when § ~ 3, in which case the second point is close to the beam center,
fi15 = 0 (poor correlation), in agreement with Fig.5.5. As § — —oo0, (i.e. both points
are on the left tail of the beam) there is maximum correlation (), ~ 1). This high
degree of coherence is due to the following fact: at the tails there is essentially
only one mode, (the highest-order mode, m = 1) which is coherent in itself. For
8 — 400, u;, =~ —1 and this 7 phase-shift is due to the anti-symmetric character of
this highest-order mode. Fig.5.7, provides the same information at the intermediate
point 7 = —0.4, when n = 2. Note that all these cross-sections are very different in
character from those found in the case of logarithmically saturable nonlinear media
(see Chapter 6). In Log systems, the statistical process is everywhere stationary,
i.e. p,, depends only on § and it is Gaussian in n‘ature. As shown here for the
Kerr case, the coherence curves depend also on the position n and do not always
go to zero as § — +oo. This feature was also encountered in saturable Kerr media
of the type I/(1+ I) (as will be seen in Chapter 7). This important difference is
due to the nite number of modes associated with the Kerr incoherent solitons. In
particular, the induced waveguides in Kerr and Kerr-saturable media exhibit cutoffs
( nite number of modes) whereas the logarithmic one does not. Figure 5.8 depicts

the coherence function for n = 3 . Similar cuts are also provided in Figs. 5.9,
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5.10, and 5.11. Fig.5.9 shows how the center correlates with rest of the beam for
n = 3. Interestingly enough, in this case, there is a weak correlation between the
center (7 = 0) and the tails (§ — +00). This is because the highest-order mode
(m = 1), which survives at the tails, happens to be even and it is thus nite at
the center. Fig.5.10 gives the correlation between a point at the tails (n = —3) and
the rest of the beam. Note the high degree of coherence (1,5 ~ 1) between the two
tails. Unlike the case shown in Fig.5.6, the correlation is in phase since again in
this case the highest-order mode is even. Finally Fig.5.11 gives the coherence factor
at n = sech™? (2/ \/E_)) ~ +0.4812 when n = 3. Using the coherence factor given
in Appendix B, it can be readily shown that these particular points are completely
uncorrelated with the tails of this incoherent soliton. Figures 5.12 and 5.13 depict
the coherence factors for n = 4 and 5, respectively. It is interesting to observe the
similarity between the p,, surfaces when n is odd or even. Clearly, as the order of

the soliton increases, the coherence surfaces become more involved.

5.4 Conclusions

In conclusion, we have shown that multimode incoherent spatial solitons are pos-
sible in non-instantaneous Kerr-like media. Closed form solutions were obtained
using the self-consistency approach provided that their intensity pro le is of the
sech? (z/x,) type. The coherence properties of these incoherent soliton states were
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Figure 5.4: Spatial coherence function as a function of 7 and 6 when n=2.
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Figure 5.5: Cross-section of the coherence function when n=2 and 1=0.
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Figure 5.6: Cross-section of the coherence function when n=2 and 7=-3.
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Figure 5.7: Cross-section of the coherence function when n=2 and n=-0.4.
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Figure 5.8: Spatial coherence function as a function of 7 and & when n=3.
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Figure 5.9: Cross-section of the coherence function when n=3 and n=0.
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Figure 5.10: Cross-section of the coherence function when n=3 and n=-3.
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Figure 5.11: Cross-section of the coherence function when n=3 and 1=0.4812.
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Figure 5.12: Spatial coherence function as a function of 77 and 6 when n=4.
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Figure 5.13: Spatial coherence function as a function of 7 and § when n=5.
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also investigated in detail and explained by means of their modal composition.
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Chapter 6

Multimode incoherent solitons in

saturable nonlinear systems

In this chapter, we show that multimode incoherent spatial solitons are possible in
log-type saturable nonlinear systems. The mode-occupancy function associated with
these soliton states is found to obey a Poisson distribution. Our analysis indicates
that two approaches, i.e. the dynamic coherent density description as well as the
static self-consistent multimode method lead to exactly the same results. Closed
form solutions are obtained for (14-1) D as well as for (2++1) D circular and elliptical

incoherent solitons.
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6.1 Introduction

Using coherent density approach it has been shown that (1+1) D incoherent spatial
solitons are in fact possible in saturable nonlinear media of the logarithmic type.
It is important to note however, that in general, the coherent density model is
by nature better suited to describe dynamic evolution and thus it does not readily
lend itself toward identifying stationary solutions such as incoherent spatial solitons.
With the exception of the saturable logarithmic‘ model (perhaps the only exactly
soluble model in the coherent density description), the question naturally arises as to
whether incoherent spatial solitons also exist (or not) in other saturable nonlineauv~
systems (such as in biased photorefractives). In order to addressb this problem,
we developed an alternative theory which is essentially a self-consistent incoherent
multimode approach [83]. In brief, in this procedure, an incoherent spatial soliton
is sought, which intensity-wise is a superposition of all the modes self-consistently
guided in‘its nonlinearly induced waveguide. By doing so, (14-1) D photorefractive
incoherent spatial solitons, the conditions necessary for their ‘existence as well as
their coherence characteristics were obtained[83]. Furthermore, in the last chapter,
by using this approach, we showed that multimode incoherent spatial solitons are
possible in non-instantaneous Kerr-like media. At a rst sight, the two theories
[79],[83] may seem to have very little in common. Thus it is important to ask

whether the two approaches are mutually-consistent or lead to the same results.
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Moreover, it is interesting to know whether (2+1) D incoherent spatial solitons are
also possible in saturable nonlinear media.

In this chapter we show that muitimode incoherent spatial solitons are possi-
ble in logarithmically saturable nonlinear media. The mode-occupancy function of
these soliton states is found to obey a Poisson distribution. Our analysis demon-
strates, that in this case, the two theories, i.e. the dynamic coherent density de-
scription and the static self-consistent multimode method lead to identical results.
Two-dimensional circular and elliptical incoherent spatial solitons along with their
characteristics are also obtained in closed form. Even though the saturable logarith-
mic nonlinearity differs from the photorefractive, it provides nevertheless a platform
(perhaps the only platform) upon which the equivalence of the two previously men-
tioned approaches can be established in closed form. Finally, as recently argued by
Snyder and Mitchell [101] and by Shen [102], simpli cations of this sort in terms
of accessible nonlinearities, can provide valuable insight and still maintain the

characteristic features of the underlying physical process.

6.2 Incoherent multimode bright solitons

We begin our analysis by considering a saturable nonlinear medium of the loga-

rithmic type, similar to that previously considered by Snyder and Mitchell in their
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study of mighty morphing spatial solitons and bullets [80], i.e.
n?(I) =nZ +naln(I/L) (6.1)

where ng is the linear refractive index of the material, n, is a positive dimension-
less coefficient associated with the strength of the nonlinearity and I is a threshold
intensity. To avoid any logarithmic singularities we assume that the In(//I;) non-
linearity results from the more realistic In(1 + I/I;) model in the limit I > I, .
Let the optical beam propagate in the z direction. We also make the important as-
sumption that the nonlinearity responds much slower than the characteristic phase

uctuation time across the incoherent beam so as to avoid speckle-induced lamen-
tation instabilities [91]. Thus, in this regime the material will experience only the
time averaged beam intensity as in the case of photorefractives. Furthermore let
the electric component of the optical eld be written in terms of a slowly varying
envelope U, i.e., E = Uexp(ikz) where k = kong and kg = 27/Xo. In that case,
it can be readily shown that the envelope U in this nonlinearly induced waveguide

evolves according to

oU 1(6*U 06U a?
Z¥+§(E7+W>+?IH(IN)U_O (6-2)

where Iy = I/I, is a normalized intensity and in Eq. 6.2 we have used normalized
coordinates and quantities, that is, s = x/wg, N = y/wo, £ = z/kw?, a® = ny(kowp)?
where wy is an arbitrary spatial scale or spot size.
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6.3 One dimensional incoherent solitons

We rst employ the self-consistent incoherent multimode description in the case
when the incoherent beam is one-dimensional or planar. For the time being, let us
assume that an incoherent spatial soliton of a Gaussian intensity pro le exists, i.e.
Iy = rexp(—s?) where r is an intensity ratio with respect to I,. From these last
assumptions, Eq. 6.2 takes the form

OU 18°U o 9
za—£+-2—-ﬁ+—é—[ln(r)—~s]U—0 . (6.3)

The allowed modes in this parabolic waveguide can then be easily obtained in terms
of Gauss-Hermite functions [103] and thus the optical eld can be expressed through

o0
superposition, i.e., U = Y c¢,u,, where

m=0

Um = Hp (a1/2s) exp (—a32/2) exp (16,,€) (6.4)

and c,, are the mode-occupancy coefficients that vary randomly in time. In Eq.
6.4, H,,(z) are Hermite polynomials, 3,, = (1/2) [@®*In(r) — (2m + 1)a] and m =

0,1,2,... . The time-average intensity of this beam can then be obtained from

Iy = (0F) = ¥ (leml?) luml (65)

m=0
where we made use of the fact that the time average of the cross-interference terms
is zero (<c,-c;> o 8;;) under incoherent excitation [83],{104]. Yet, at this point, we
still do not know the mode-occupancy function <|cm|2> that self-consistently leads
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to the incoherent Gaussian soliton Iy = rexp(—s?) assumed in the very beginning
of this analysis. Let the mode-occupancy, as in the case of quantum mechanical
coherent or Glauber states [69],[103], be described by a Poisson distribution [105],
that is

(Jeml?) = Fexp (~p/2) B2 (66)
where p is the Poisson parameter and 7 is a constant to be determined. From Egs.

6.4-6.6 and with the aid of Mehler s formula [106],

,: -Hy () H, (1) = o [21; = _1pi(;;2+y2)} (6.7

one can then obtain the following result

7 exp (=p/2)

1—p '
Iy = ——=—Lt"Lexp |—as® [ —= . 6.8
w= 122 o o (122 ©65)
Thus the assumed Poisson distribution self-consistently leads to the incoherent spa-
tial soliton Iy = rexp(—s?) provided that # = ry/1 — p? exp(p/2) and

a—1

a+1 (6.9)

p=
From Eq.6.7 it is evident that in this case, the positive Poisson parameter p must
be below unity (p < 1) for this incoherent soliton to exist. Or alternatively, from
Eq.6.9, o > 1 which implies that at a given wavelength )o, the quantity n;/ %wo has
a cut off, below which no incoherent spatial solitons are allowed.

To establish the equivalence between this result, Eqs.6.8 and 6.9, with that
previously obtained using the coherent density approach in Chapter 4 one must
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resort to diffraction data. More speci cally, during linear diffraction (ny = 0), the

intensity of each Gauss-Hermite mode evolves according to [103] (see Appendix C)

al/?s

1+ a2e?

By keeping in mind that the mode-occupancy function <|cm|2> satis es the Poisson

(6.10)

2 1 as 2
m (5,6 = F——=exp (- H,
[t (5, ) 1+azgze"p< 1+a2£2) 2

distribution of Eq.6.6 and by employing again Eqs.6.7 and 6.9, we nd that upon

diffraction the normalized intensity pro le Ip (see Appendix D) is given by

i ) . (6.11)

T
1+ a2 p( 1+ a2

Equation 6.11 clearly shows that during diffraction this incoherent beam remains

ID=

Gaussian. Given the fact that the initial modulation function [79] is Gaussian, i.e.
bo(s) = exp(—s?/2) and that the diffraction behavior of this statistically stationary
beam obeys a convolution integral, Eq.3.3 of Chapter 3, it then becomes immediately
apparent that the angular power spectrum Gy () of the incoherent source must
also be Gaussian. In this regard, let Gn(0) = (7V/26,) ' exp(—6°/6%) where 6, is
the width of the incoherent angular power spectrum. Thus, had we treated the
diffraction regime within the coherent density approach [71] (see Appendix E), we

would have arrived at the following result

2

T S
P T arve T (_1+(1+V2)£2) (612)

where V = kwgf,. Since diffraction-wise, the results of Egs. 6.11 and 6.12 are the
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same, we conclude that a? = 1+ V? or that

1
Wy = —F=—=
ko\/’ﬂQ - ngeg

The result of Eq.6.13 is exactly what has been previously obtained in Chapter 4,

(6.13)

Eq.4.12, using the coherent density approach. At a more fundamental level, our
analysis demonstrates that the two theories, i.e. the dynamic coherent density
description as well as the self-consistent multimode method lead in this case to
exactly the same results. In the coherent limit 6o — 0 or @ — 1, the soliton spot-
size reduces to wp = (kon;/ ?)~1 as previously found by Snyder and Mitchell [80]. In
this same limit, Eq. 6.9 suggests that the Poisson parameter p — 0 and thus the
beam itself is single-moded or fully coherent. Moreover, the width 6 of the angular
power spectrum of the incoherent source and the Poisson parameter p are now
related through the following expression p = [(1 + V2)1/ 2 1} / [(1 +VH2 4 1].
Of course these incoherent spatial soliton states exist as long asp <1 or a > 1 or

equivalently 6y < ni/%/nq.

6.4 Two dimensional incoherent solitons

In the same vein, one may show that two-dimensional incoherent spatial solitons

also exist in this nonlinear system. To do so, let us assume in general an elliptic
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Gaussian incoherent beam,
Iy =rexp [—(82 + 027}2)] (6.14)

where the parameter o is associated with its degree of ellipticity. Substituting Eq.
6.14 in Eq. 6.2 we get

OU 1(8*U oW\ o s 9.9
’&—(%-4-5(‘8?4‘—%)4*?[111(7‘)—8 —U'I?]U=0. (6.15)
The optical eld U in this elliptic paraboloid potential can be obtained as a super-

(o] o0
position of the allowed Gauss-Hermite modes, i.e. U = 3 3 Cpmalimn Where
m=0n=0

Umpn = Hm (al/2s) H, (a1/201/2n) exp [— (a/2) (32 + 0772)} exp (iﬂm’nﬁ) (6.16)

where 8, , = (a/2) [aln(r) — (2m + 1) — 0(2n + 1)]. The overall intensity of this

beam can then be found from

[o <3¢ o}

In="3"3 (lemal®) lumal’ (6.17)

m=0n=0

where we have assumed again that under incoherent excitation (cicy;) o< 86y If

we now allow the mode-occupancy <lcmn|2> to obey a double Poisson distribution

(lemnl*) = Fexp [—% (p+ q)] (e/2)” (a/2)" (6.18)

m!n!
then the two dimensional incoherent spatial soliton Iy = rexp[—(s* 4+ o?p?)] can
be self-consistently recovered using Egs. 6.7, 6.17, and 6.18 provided that the two

Poisson parameters p, g satisfy

(6.19)




a—0

(6.20)

q:a+a
and moreover 7 = 7 [(1 —p*) (1 — ¢®)]"? exp [(p + q) /2]. These incoherent solitons
can be elliptical (o # 1) or circular (¢ = 1) depending on whether the angular
power spectrum of the incoherent source (exciting this structure) is symmetric or
not. Moreover, these states exist as long as 0 < (p,¢) < 1 or o > max(l,0).
The possibility of generating (2+1) D eiliptical solitons in isotropic nonlinear media

seems to be unique to incoherent multi-mode solitons, since it has been shown that

their coherent counterparts change their widths periodically during propagation [80].

6.5 Coherence properties

Having found the modal composition of these solitons, their coherence properties
[69] can then be described by following procedures similar to those employed in
Refs. [104] and [107]. Using Egs.6.7, and 6.16-6.20, one can show that the complex

coherence factor p,, of these solitons is given by

_ —exnd pb? qo?e?
paz (s, M58 +6,m+¢) = p{ [(1—p)2+(1——q)2]} : (6.21)

This latter result demonstrates that the coherence function p;, is independent of
position (s,7) within the soliton beam and instead it depends only on the deviation
distances § and . For a circular incoherent soliton (p = ¢, o = 1), the actual
correlation length [, (the distance where u,, falls to its e~ value) can be obtained
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from Eq.6.21 and it is given by I, = wp(1 — p)p~*/2. Evidently, [ — oo when p =0
(single mode case) whereas I; — 0 when p — 1. These results are in agreement
with our previous discussion. In fact, for one dimensional solitons, the complex
coherence factor p,, is identical to the statistical autocorrelation function of the
source R (z; — Z2), R(’ml — ) can be obtained from Gy (0) via an inverse Fourier
transform [79], which is given by R (z1 — z2) = exp (——52V2 / 4) where 27 — T3 = wod.
This is true since, from Egs. 6.13 and 6.19, p(1 —p)~> = V?/4. In other words,
the correlation lehgth of a logarithmic incoherept soliton remains invariant during
propagation and it is equal to that of the exciting incoherent source. Moreover, as in
the fully coherent cése [80], the dynamics of these two-dimensional solitons (during
compression or expansion, i.e. when p and g deviate from the prescribed values of
Eqgs.6.19 and 6.20) can also be described in closed form. We would like to emphasize
that by its very nature the logarithmic nonlinearity leads to an in nite set of modes
which are in turn related through a Poisson distribution. Of course this is also true
for the ln(1.+ In) nonlinearity provided that the maximum intensity at the center
of the beam is much greater than I,. In particular, computer simulations show that
intensity-wise the In(Iy) model nicely approximates the In(1 + Iy) nonlinearity as
long as the intensity ratio, max(Iy) > 100. However for relatively low intensity
ratios the mode occupancy (in the In(1 + Iy) model) is not exactly Poissonian and '

the correlation length (even though at in the middle) tends to increase at the low
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intensity boundaries of the beam. This is in full agreement with the results we
have previously obtained [83] for incoherent photorefractive spatial solitons where
An(1+1T1 N)—l. Finally at very high intensity ratios, the correlation length becomes

again constant across the Gaussian beam as suggested by Eq. 6.21.

6.6 Results and discussion

As an example, let us consider a logarithmically saturable nonlinear medium with a
In(1 + Iy) nonlinearity, no = 2 and ny = 10™%. The free space optical wavelength is
taken to be A\g = 0.5 um and the width of the angular power spectrum of the source
is By = 0.258°. Fig.6.1(a) shows stationary propagation of a 1-D incoherent soliton
when r = 10% and zy ~ 18 pm (intensity FWHM is ~ 30 pum) as obtained numer-
ically from the coherent density method. Fig.6.1(b) on the other hand, illustrates
the intensity pro le of the rst four modes involved in this Gaussian soliton as ob-
tained from beam propagation methods. Evidently, these individual modes remain
invariant as a function of distance. As expected, the sum of the individual modes
provides the intensity pro le of Fig.6.1(a). These results are in excellent agreement

with our theoretical analysis.
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Figure 6.1: (a) Stationary propagation of an incoherent Gaussian soliton in a In(1+Ly)
nonlinear medium up to a distance of 1 cm. (b) Evolution of the intensity profiles of
the first four modes associated with this soliton.
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6.7 Conclusions

In conclusion we have shown that incoherent spatial solitons are possible in log-
arithmically saturable nonlinear media. These solitons can exist as long as their
mode-occupancy function obeys a Poisson distribution. We have found that two
approaches, that is the dynamic coherent density description as well as the self-
consistent multimode method lead in this case to exactly the same results. Two
dimensional (circular and elliptical) multimode spatial solitons have also been ob-

tained in closed form.
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Chapter 7

Dynamics of incoherent

self-trapped beams

In this chapter, using the coherent density approach, we study the propagation dy-
namics of incoherent bright and dark beams in biased photorefractive crystals. We
show that under appropriate initial conditions, bright as well as dark-like incoherent
quasi-solitons can be established in this material system. Our numerical simulations
demonstrate that the coherence properties of these beams can be signi cantly af-

fected by the self-trapping process.
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7.1 Introduction

In Chapter 3, a theory based on the so-called coherent density approach has been
developed and good agreement was found between the experimentally observed be-
havior and the theoretical results of this model [79]. In Chapter 4, using the coherent
density approach, an exact analytical solution has been obtained for (1+1) D in-
coherent spatial solitons in saturable nonlinear media of the logarithmic type [82].
We have also developed an alternative method which is capable of identifying static
incoherent spatial soliton states [83]. This latter model, seeks in a self-consistent
fashion multimode soliton solutions whose total intensity can be obtained via in-
tensity superposition of all the modes guided in the nonlinearly induced waveguide.
In this manner, we have found (1+1) D photorefractive incoherent spatial solitons,
the conditions necessary for their existence as well as their spatial coherence char-
acteristics [83]. In Chapter 5, by using this latter approach, we have shown that
incoherent solitons are possible in non-instantaneous Ker-like nonlinear media. In
Chapter 6, on the other hand, it is demonstrated that the log type incoherent soli-
tons can also be described by using self-consistent multimode method [114]. These
studies have shown that incoherent spatial bright solitons are indeed feasible in any
non-instantaneous nonlinear media. Yetv at this point, there are still several other
issues that merit further investigation. For example, it is not at all clear whether

incoherent dark solitons are also possible. Moreover, it is of interest to know how the
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coherence properties or uctuation statistics of these beams are in uenced during
propagation by the photorefractive nonlinearity.

In this chapter, we study the dynamics of incoherent bright and dark beams in bi-
ased photorefractives, which represent an example of a non-instantaneous saturable
nonlinear material system. We employ the dynamic coherent density approach and
numerically solve the underlying nonlinear Schrodinger-like integro-differential equa-
tion. We predict that under odd initial beam conditions, a dark-like incoherent
spatial soliton will emerge and after a certain distance it takes the form of a gray
structure. As in the case of coherent solifons, incoherent éay soliton pairs (dou-
blets) and triplets are also possible under even and odd initial beam conditions
respectively. In all cases (dark and bright), we show that the photorefractive nonli-
narity signi cantly alters the coherence properties of these beams. For bright beams,
we nd that the correlation length across the beam nally evolves according to the
predictions of Ref. [83]. Moreover, we emphasize that, our results are of a gen-
eral nature, i.e. they can be used to describe incoherent beam dynamics in any

non-instantaneous nonlinear medium.

107




7.2 Evolution dynamics of incoherent beams in

biased photorefractive media

7.2.1 Evolution equation

In a standard biased Strontium Barium Niobate (SBN) photorefractive crystal arrange-
ment [23],(24], the normalized intensity Iy = I/l of an incoherent beam obeys the

following nonlinear integro-differential equation (see Chapters 3 and 4):

(Of 0\ 10 ko s I S
’ (87, _+ 98:0) T o 8zt 2 nerssfo (1+ ) 14+ In(z,2) 0 (7.1)
where
+00
In(@,2)= [ 1f(@z0)df (7.2)
and at z =0
F(z=0,2,0)= (r,p)?G¥* (0) o (z) . (7.3)

In the above equations, f represents the so-called coherent density,  is an angle
(in radians) with respect to the z axis, k = kone, and ko = 2m/Xo. Iy is the dark
irradiance, n, the extraordinary refractive index and r33 the electrooptic coefficient
involved. Ey = +V/W where V is the applied bias and W the z-width of the crystal.
Gn () is the normalized angular power spectrum of the incoherent source and ¢,(z)
is the input complex spatial modulation function. Moreover, r is the maximum
intensity of a bright incoherent beam whereas p is the normalized intensity of a
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dark beam at £ — Foco. Equation 7.3 restates the fact that the coherent density

has been initially weighted with respect to the source angular power spectrum.

7.2.2 Coherence length

The coherence properties of these evolving partially incoherent beams can be ob-
tained through a modi ed version of the Van Cittert-Zernike theorem {74}, particu-
larly suited for the coherent density approach. The complex coherence factor p,, is

obtained from

1
\/IN (z1, 2) In (22, 2)

pp (1, 72) = (7.4)

X / f (z1,2,0) f* (z2, 2,0) exp [ikf (x1 — x7)] dO

In general, the complex coherence factor can be an arbitrary function of both z;
and z,. Thus, it is often more convenient to describe the coherence properties of an

optical beam through the so-called correlation length . which is de ned as follows

+o0
le (z) = / iz (2,2 ) (7.5)
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7.3 Dynamics of incoherent bright and dark beams

and their coherence properties

*

As an example let us considef a biased SBN:75 crystal with n, = 2.3, r33 = 1022
pm/V, Ay = 488 nm, W = 6 mm, similar to that used in Ref. [35]. Let us also
assume that at the input, the source uctuations obey a stationary random process
(i.e. p,o depends only on z; —z,) and that the normalized angular power spectrum of
the incoherent source is Gaussian, i.e. Gn(8) = (7/28,)~ exp(—6?/63) where 6, is
associated with its angular width [79]. Equations 7.1 and 7.2 are numerically solved
by appropriately discretezing them in 6 and by using beam propagation methods.

In turn, the correlation length is obtained from Eqs. 7.4 and 7.5.

7.3.1 Incoherent bright beams

Let us rst consider an incoherent Gaussian bright beam whose spatial modulation
function is given by ¢, (z) = exp[—x?/(2z2)] in which case Iy = rexp(—2z?/2})
where z, is related to the intensity FWHM. At the input, the intensity FWHM of
this beam is 30 um, and its maximum normalized intensity is r = 3. The width of
the ‘angular power spectrum is taken here to be 6y = 0.55°. Since we have assumed
stationary source uctuations, it can then be readily shown that at z =0, ﬂ12(6) =

exp [—62 / 6(2,] where § = x; — 2 and 6y = 2/(k6o). Thus, the incoherent beam at z =
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0 exhibits a constant coherence length I, = v/27/ (k) which is independent of the
spatial modulation function ¢y(z) or In(z,z = 0). For the above given parameters,
the coherence length of the source is approximately 8.8 ym. It can be shown, that
during linear diffraction the FWHM of this bright beam increases to 165 um after 1
cm. The coherence length I.(z, z) of this Gaussian beam also increases with z while
remaining constant across z. Note that, this latter feature is particular to Gaussian-
Schell sources. If the input complex envelope @, (z) is not Gaussian, the correlation
length [, is no longer constant across the beam during diffraction. On the other
hand, by activating the photorefractive nonlinearity, by applying a biaé voltage, the
coherence properties change dramatically. For example, by setting the applied bias
to 550 V/, this incoherent bright beam propagates almost undistorted and behaves
like a quasi-soliton as shown in Fig.7.1. This incoherent quasi-soliton tends to
slightly oscillate in an effort to adjust to its new statistical-phase environment. In
this case, the coherence length remains approximately constant around the center of
the beam whereas it increases at the margins as depicted in Fig.7.2 within a spatial
window of +40 um. This behavior is in good agreement with the static predictions of
Ref. [83]. The existence of this bright quasi soliton can be understood on the basis of
the multimode approach [83]. The increase of the coherence length at the margins of
the beam can be explained from the fact, that away from the center, only the higher

order modes contribute to the coherence. Qur numerical simulations also show that
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further increase of the bias voltage sets the beam into cycles of compression and
expansion. In this latter case, the coherence length decreases at the center of the

beam during compression and it increases when the beam expands.

7.3.2 Incoherent dark beams

As a second example, we consider the dynamics and coherence properties of an
incoherent dark-like beam under odd and even initial conditions. In particular, let
the spatial modulation function at the input be o (z) = tanh(z/zo) under odd
initial conditions, and @, (z) = [1 — (1 — €?) sec h® (z/ 20)]"/? under even. Here z is
associated with the intensity FWHM of this beam and €? < 1. In this example, the
intensity FWHM of these dark beams is taken to be 10 um and their normalized
background intensity is p = 3. Let again, 8y be 0.55° with a source coherence length
I, ~ 8.8 um. It is important to note, that, during linear diffraction the coherence
length of an incoherent dark beam becomes a function of z which implies that eld

uctuations are no longer stationary. Moreover, unlike their coherent counterparts,
incoherent dark beams tend to quickly disappear during diffraction, without leaving
any trace of their previous existence. For example, after 1 cm of propagation, an
odd dark beam whose initial FWHM is 10 pym will diffract to 138 um, and its
grayness will be ~ 90%, and the dark notch almost disappears. Our numerical

simulations show that photorefractive nonlinearity plays again an important role.
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Figure 7.1: Propagation of bright incoherent quasi-soliton when »=3 and at a bias of
550v.
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Figure 7.2: The coherence length /, of the bright soliton shown in Fig.7.1 as a function
of distance.
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With the application of ~ —300 V, after a certain distance of propagation, an
initially odd beam becomes a gray-like incoherent quasi-soliton whose FWHM and
grayness oscillate around constant values. The intensity and the coherence length
of this incoherent beam is depicted in Figures 7.3 and 7.4. Fig.7.3 shows that even
though the beam itself exhibits a somewhat oscillatory behavior, its spatial FWHM
varies between 9 um and 5.6 um and its grayness between 56 % and 31 % over
a distance of 2 e¢m. Furthermore, its coherence length, Fig.7.4, becomes higher
(by ~ 20 %) within the dark notch with a mild depression at the center. Note
that a gray-like fundamental incoherent dark quasi-soliton was also suggested by
Hasegawa, [85],[86],[87] by averaging the phase of all the quasi-particles involved in
the Vlasov transport equation. Our analysis on the other hand, shows that the phase
is extremely important (even more than the normalized intensity p), i.e. a single
dark incoherent soliton is only possible provided that initially a m-phase shift is
imposed on the wavefront. Fig.7.5 shows, what happens to this beam if we increase
the bias voltage to —550 V. In this case, the odd incoherent dark beam leads to
a triplet. This differs from coherent triplets [9],[34],[108] since the central soliton
is gray-like. Fig.7.6 shows that the coherence length increases again by ~ 20 %
around the soliton regions. If the incoherent beam at the input is even, a gray
soliton doublet occurs. Our simulation shown in Fig.7.7, demonstrates that this

is true when the bias voltage is —550 V, the intensity FWHM is initially 10 pum
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and €2 <« 1. Fig.7.8 shows the correlation length associated with these incoherent
doublets.

Depending on the initial conditions, an even or odd number of incoherent dark-
like structures can appear at higher voltage values. From these 1-D results one may
speculate that 2-D incoherent vortex solitons may also be possible in photorefractives
and in other non-instantaneous nonlinear media. Furthermore, we emphasize that
the behavior of these bright /dark incoherent quasi-solitons is fundamentally different
from that of their coherent counterparts. For example, unlike a coherent gray soliton,
the fundamental incoherent dark soliton does not exhibit a transverse velocity in

spite of its grayness.

7.4 Conclusions

In conclusion, we have shown that under appropriate initial conditions, bright as
well as dark-like incoherent quasi-solitons can form in biased photorefractives. Using
numerical simulations we have found that incoherent gray soliton pairs as well as
triplets are possible under even or odd initial conditions. The coherence properties
of these beams were found to be signi cantly affected during propagation by the

photorefractive nonlinearity. Relevant examples have been provided.
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Figure 7.3: Intensity profile of a dark-like incoherent soliton when p=3 and
the bias is -300 V.

117




-100

Figure 7.4: Coherence length [, of the dark soliton shown in Fig.7.3.
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Figure 7.5: Formation of an incoherent soliton triplet when p=3 and
the bias is -550 V.
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Figure 7.6: The coherence length [, of the triplet shown in Fig.7.5 as a function of
distance.
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Figure 7.7: An incoherent gray soliton pair from even initial conditions.
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Figure 7.8: The coherence length /, associated with the pair shown in Fig.7.7.
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Chapter 8

Dark incoherent soliton splitting

and phase-memory effects

In this chapter, the effects of incoherence on the evolution of incoherent dark soliton
doublets are investigated both theoretically and experimentally. We show that the
dynamics of these incoherent self-trapped entities are associated with strong phase-

memory effects which are otherwise absent in the linear regime.
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8.1 Introduction

In the last chapter, we have shown that incoherent dark solitons may be possible in
biased photorefractives [109]. Based on this prediction, incoherent dark planar and
2-D dark solitons ( vortices ) were observed in a SBN:60 crystal [110]. This was
achieved .by employing the photorefractive self-defocusing nonlinearity associated
with screening solitons [23],[24]. As predicted in [109], the incoherent dark solitons
were found to be gray. Moreover, these dark incoherent solitons were efficiently ex-
cited provided that an initial 7-phase ip was imposed on the incoherent wavefront.
Inéoherent Y-soliton splitting was also predicted in the last chapter. Nevertheless,
thus far we did not consider the behavior of these incoherent soliton doublets, for
different degrees of coherence.

In this chapter, we report the rst experimental observation of dark incoher-
ent soliton Y-splitting in a noninstantaneous self-defocusing nonlinear medium as
predicted in Chapter 7. The evolution of these incoherent soliton doublets is then
systematically investigated as a function of their coherence, both theoretically and
experimentally. Surprisingly, we nd that over a wide range of parameters, the Y-
splitting is approximately the same irrespective of coherence. Moreover, we show
that the dynamical behavior of this incoherent Y-splitting process is associated with
strong phase-memory effects which are otherwise absent in the linear regime. In

other words, we show that dark incoherent self-trapped entities (dark incoherent
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solitons) are characterized by a strong memory effect that lasts throughout propa-
gation and governs their propagation behavior (single soliton versus Y-soliton split-
ting, etc.). This is in sharp contrast to all known so far about linear propagation of
incoherent beams, in which all phase information is fully washed out after a nite

distance [111],[112].

8.2 Coherent and incoherent Y-juntion solitons

8.2.1 Diffraction of coherent and incoherent beams

Our experiments were carried out in SBN:60 crystals. For this reason, here we use
the (141) D saturabie nonlinearity of the form 1/(1 + I) [23], [24] so as to make
direct comparisons with experiment. We emphasize, however, that our results hold
for any noninstantaneous nonlinearity that can give rise to dark solitons. In this
material system (photorefractives), the normalized intensity Iy = I/Iy (where Iy
is the dark irradiance) of the incoherent dark beam evolves according to following

normalized nonlinear integro-differential equation {79],{82],{109]:

(8f . Bf\ , 18 F
’('éf+°‘5§)+§asz+51+IN(s,g)“0 ®1)
where
+00
In(s,0)= [ 1£(s,,6)df (8.2
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and at ¢ = 0, the coherent density f is given by

F(¢=0,50)=p?G}* @) by (s) . (8.3)

In the above equations, we have used the following normalized coordinates: ¢ =
z/(kz?) and s = z/zo where zo is an arbitrary spatial scale associated with the
intensity FWHM of the beam. Moreover, a = kzof, 8 = (k®z}/2) nZrs3 |Eo| (1 + p)
where 6 represents an angle (in radians) with respect to the z axis, k = kon, is the
wavenumber, ko = 27 /X9, . is the extraordinary refractive index of the material,
and 733 is the electrooptic coefficient involved. Ey = —V/W is the value of the space
charge eld at £ — Zoo where V is the reverse applied bias and W the z-width
of the crystal. Gn(6) is the normalized angular power spectrum of the incoherent
source and ¢,(s) is the input complex spatial modulation function. In this study,
Gn() is assumed to be Gaussian, i.e. Gn(0) = (%1/290)“1 exp(—6%/6%) where 0 is
associated with the width of angular power spectrum. Finally, p is the normalized
intensity of the dark beam at z — +o00. Here, as usual, we assume that, the beam at
the input obeys a stationary random process. In general, the coherence properties
of these beams can be followed using a version of the Van Cittert-Zernike theorem
as in the last chapter. The coherence length of the beam at z = 0 can be readily
obtained from Gn(6) and it is given by I, = v/27/ (kfp). When the beam is fully
coherent (fy = 0), the coherence length of the beam becomes in nite, i.e. [, — oco.
In this case, the system of Egs. 8.1 and 8.2 collapse to a standard single differential
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equation given in Chapter 2 [23],[24].

Before we present our experimental results, it may prove bene cial to rst discuss
the behavior of such incoherent dark beams from a theoretical point of view. As in
the experiment, let us consider a biased SBN:60 crystal with n, = 2.3, r33 = 250
pm/V, Xy = 514 nm, W = 5.3 mm [110]. We let the spatial modulation function
at the input be ¢, (z) = tanh (z/zo) under odd initial conditions, and ¢, (z) =
[1 — €% sec h? (z/70)]"/* under even. The quantity €2 de nes the beam s grayness.
Throughout this work, we assume that at z = 0, €2 ~ 1 (almost black even dark
beams). The input intensity FWHM of the even and odd dark beams is taken
here to be 25 um as shown in Fig.8.1(a). Moreover, the normalized background
intensity is p = 3. First, we consider linear diffraction of coherent and incoherent
dark-beams under odd and even initial conditions. Figs.8.1(b) and (c) show the
diffracted intensity pro les of coherent odd and even dark beams respectively after
~ 12 mm of propagation. In this case, the intensity FWHM of the odd dark beam
at the output is ~ 42 um whereas that of the even is ~ 76 ym. It is important
to note that aff;er diffraction, the intensity of the odd coherent beam is always zero
at the center whereas that of the even is gray-like. Fig. 8.1(d), on the other hand,
demonstrates how an odd or even incoherent dark beam will diffract after 12 mm of
propagation when at the input 6y ~ 5 mrads or I = 17 wm. This latter | gure shows

that, the intensity pro les of the odd and even incoherent dark beams are almost
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identical with an output FWHM of ~ 100 gym. Simulations suggest that the same
also applies for the l.(z) curves corresponding to these two cases as shown in Fig.
8.1(e). Thus, from diffraction data alone, it is extremely difficult to distinguish an
odd dark beam from an even one. In other words, the randomly changing speckled
structure of an incoherent beam leads to a loss of phase memory. Therefore, as
a result of this phase washing effect, a sufficiently incoherent dark beam diffracts
approximately the same way regardless of the phase information initially imposed on
it. Animportant distinction between diffraction of a coherent and an incoherent dark
beam comes from the structure of their background. Figure 8.1 clearly demonstrates
that a diffracted coherent dark beam involves intensity ripples in its background.
These oscillations tend to disappear in the case of an incoherent beam as a result
of its speckled structure.

When on the other hand the nonlinearity is activated, the dynamics of these in-
coherent beams depend on initial phase information. As previously predicted, gen-
eration of a single incoherent dark (which is in reality gray) beam or a higher-order
triplet requires a m-phase shift. Conversely, starting from even initial conditions, an
incoherent gray soliton pair or Y-soliton splitting can be obtained [109]. In other
words, in the presence of nonlinearity, an incoherent dark beam tends to remember
its origins and identity, i.e. a phase-memory effect is established. Thus, the beam

starts to behave in a quasi-coherent fashion [34].
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Figure 8.1: (a) Intensity profile of a 25 um odd or even dark beam at the input.
Diffraction of an (b) odd coherent dark beam, (c) even coherent dark beam, (d)
incoherent odd or even dark beam with [, = 7.3 um after 12 mm of propagation. (e) /.
in ym as a function of x for the odd (dashed curve) and even (solid curve) diffracted
incoherent dark beam shown in (d).
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8.2.2 Experiment results

Experiments with an amplitude notch (even initial conditions) are performed by
using both coherent and spatially incoherent light sources for comparison. Details
regarding the coherent dark soliton experiments can be found in Ref. [34]. The laser
used is a Ar ion laser (A\g = 514 nm). An arti cial background dark irradiance is
provided by uniformly illuminating the entrance face of the crystal (SBN:60) along
the ordinary axis. The maximum intensity ratio (at the tails) of the dark beam with
respect to dark irradiance is approximately 1.5. The dark beam is also broad enough
to cover entire input face of the crystal. For the incoherent case, a rotating diffuser
is employed to provide random phase uctuations across the beam [35],[36],[110]. In
this case, we generate a dark notch on a broad partially spatially incoherent beam
with controllable degree of coherence. The experimental arrangement is the same
as that in Ref. [110], except that the phase mask is now replaced by an amplitude
mask. Incoherent Y-junction solitons are generated and then compared with the
coherent ones. Fig.8.2 shows typical experimental results. When the dark beam is
coherent, it diffracts from a FWHM of 25 um (left) to about 58 pum after ~ 12 mm of
propagation (middle) when no nonlinearity is present. Note that, with the exception
of the dark notch FWHM (which from simulations is expected to be ~ 76 um), its
intensity structure is in agreement with Fig.8.1(c). The discrepancy in FWHM

is attributed to the fact that the re ection from the metallic wire introduces a
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quadratic phase which is not accounted in our simulations. After applying a voltage
of —350V (negative relative to the c-axis), the dark amplitude notch evolves into
a pair of gray solitons (right). The second and third rows of this gure depict the
same data when the dark beam is incoherent. The right column of the gure was
obtained at V = —350 V and with an input FWHM of 25 ym. As seen in Fig.8.2,
the grayness of the soliton pair increases as the incoherence of the beam increases.
Nevertheless, the spacing of these two solitons at the crystal output face is about

the same for a varying degree of coherence.

8.2.3 Simulation results

These experimental results are now compared with numerical simulations. By keep-
ing in mind that in the experiment, the input speckle size of the incoherent beams
is 30 um for Fig.8.2(b) and 15 um for Fig.8.2(c) and by considering their diffraction
behavior, we estimate that the width of the angular power spectrum in these two
cases is ~ 3.5 mrads and 5.2 mrads respectively. The simulation shown in Fig.8.3(a)
demonstrates how a coherent soliton doublet forms from a 25 pm even dark beam
after 12 mm of propagation when V = —450 V. For the same bias voltage and
initial beam width, the intensity pro le of an incoherent doublet after 12 mm of
propagation is shown in Fig.8.3(b) when 6y = 3.5 mrads or I, =25 um. Fig. 8.3(c)

depicts similar data when 8, = 5.2 mrads (I, = 17 um) and again V = —450 V.
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Figure 8.2: Experimental observation of coherent and incoherent Y-splitting: (a)
coherent dark beam; (b) (c) incoherent dark beam with an average speckle size of 30
pm and 15 pm respectively. The first column depicts the input intensity, the second
one diffraction data, and the third one Y-splitting at -350 V. In all the cases the
intensity FWHM of the beam at the input is 25 um.
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Both gures, 8.3(b) and (c), were obtained by numerically solving Egs. 8.1-8.3 as
done in previous chapters. In agreement with the experiment, Fig.8.3 demonstrates
that the doublet becomes grayer as the incoherency increases. Surprisingly, for this
range of parameters, both theory (Fig.8.3) and experiment (Fig.8.2) suggest that the
Y-splitting angle or the doublet separation does not depend strongly on the degree
of coherence. To further understand this Y-splitting process, we carried out another
set of simulations. In this latter set, the intensity FWHM of the even dark beam
was chosen to be 10 ym (in order to accelerate splitting process) and [, varied from
oo down to 3.4 pum. Figs.8.4(a)-(c) were obtained for the same initial conditions
and bias voltage (V = —2400 V) after 12 mm of propagation for different degrees
of coherence. Even in this case, the splitting is relatively insensitive to 8. This is
by itself very interesting considering the range in which [; varies. This is another
manifestation of the phase memory effect discussed earlier. As the incoherency
of the dark beam increases, a higher bias voltage is required to establish a doublet.
Fig.8.4(d) shows Y-splitting of a 10 um even incoherent dark beam after 12 mm,
when 'V = —4000 V and I, = 3.4 pm. Finally, at lower [ s, the doublet practically

disappears (because of its grayness) and the splitting angle is further reduced.
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Figure 8.3: Intensity profile of a soliton doublet at z = 12 mm when the external bias is
-450 V and the beam is (a) coherent or incoherent with (b) I, =25 um, (c) I, = 17 um.
In all cases the initial intensity FWHM of the beam is 25 um.
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Figure 8.4: Intensity profile of a soliton doublet at z = 12 mm when the external bias is
-2400 V and the beam is (a) coherent or incoherent with (b) I, = 9.3 um, (c) .= 7.3
pm. Same information when the external bias is -4000 ¥ and [, = 3.4 um. In all cases
the initial intensity FWHM of the beam is 10 pm.
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8.3 Conclusions

In conclusion, incoherent dark soliton Y-splitting has been demonstrated experi-
mentally. Using the coherent density approach we have shown that the evolution
of incoherent dark solitons in non-instantaneous nonlinear media is associated with
strong phase-memory effects which are otherwise absent in the linear regime. The
higher-order behavior of these dark beams has been compared under the same ini-
tial conditions but for different degrees of coherence. It was found that over a wide
range of parameters, the Y-splitting is approximately the same irrespective of spa-
tial coherence. Experimental observations are in good agreement with theoretical

predictions.
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Chapter 9

Theory of Incoherent Dark

Solitons

In this chapter, we formulate the theory of incoherent dark spatial solitons in non-
instantaneous self-defocusing nonlinear media. We nd that the basic modal con-
stituents of these incoherent dark soliton entities are radiation modes as well as
bound states. Our results explain for the rst time why incoherent dark éolitons are

in fact gray and why a transverse w-phase ip can facilitate their observation.
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9.1 Introduction

The numerical results of Chapter 7 suggested that incoherent dark quasi-solitons
can be effectively excited in self-defocusing (reverse biased) photorefractive crystals,
provided that at the origin, a 7 phase jump is imposed on the incoherent wavefront
[109]. Even more importantly, unlike their coherent counterparts [113], these dark
incoherent solitons were always found to be gray! The gray character of these
solutions is in qualitative agreement with some earlier predictions of random-phase
envelope solitons made by Hasegawa two decades ago within the context of plasma
physics [85],[86],[87]. In that early work, the average dynamics of all the random
quasi-particles involved were treated using a Vlasov transport equation.
Subsequently, incoherent dark-stripe and dark-hole (vortex) solitons were exper-
imentally demonstrated in a biased photorefractive crystal [110]. In all cases, these
self-trapped incoherent beams carried the characteristic signature of dark incoherent
soliton structures [85],[86],[87],[109], i.e., they were found to be gray. Moreover, in
agreement with predictions of Chapter 7 [109], the incoherent dark solitons were
experimentally observed when an appropriate phase pro le was imposed on the
wavefront. Yet, at this point, several important questions remain unanswered. First
of all, are there truly stationary incoherent dark solitons and why are they gray?

Furthermore, why is the m-phase jump necessary for their excitation and how is
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it possible for this initial phase imprint to survive in the midst of random phase-

uctuations? The answers to the above questions can not be obtained from the
coherent density method (because of its inherent complexity) nor from the approx-
imate Vlasov approach. These issues can only be resolved by identifying the modal
composition of these dark incoherent soliton states, as was done in the case of their
bright soliton counterparts [83],(114]-[116].

In this chapter, by means of an exact solution, we demonstrate that stationary
incoherent dark solitons can exist in nonlinear self-defocusing media. These solitons,
involve in general, a belt of radiation modes (both odd and even) as well as bound
states. The presence of even radiation and bound modes explains why these struc-
tures are in fact gray. Moreover, we nd that the odd radiation modes dominate
within the dark region of the beam, which justi es the m-phase shift required to ex-
cite these dark incoherent soliton states. The coherence properties of these solitons
are also considered and they are found to be in good agreement with the results of

Chapter 7.

9.2 Theoretical formulation

Let us consider a self-defocusing nonlinear medium of the Kerr type, i.e. n? =
n2 — nyl, where ng is the linear refractive index of the material, ny is the Kerr
coefficient and I the optical intensity. We also make the important assumption
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that the nonlinearity responds much slower than the chéracteristic phase uctua-
tion time across the beam so as to avoid beam breakup due to speckle instabilities
(74],[83]. Thus in this regime, the material will experience only the time-averaged
beam intensity. Such non-instantaneous Kerr-like media include for example, biased
photorefractives at low intensity ratios and materials with appreciable thermal non-
linearities [23],[24], [92],[93]. For example, a typical phase uctuation time is 1 us,
whereas a photorefractive crystal responds within 0.1 s [110]. Let the time-averaged

intensity pro le of this planar dark incoherent soliton be of the form
I, = Iy [1 - e%sech? (z/z0)] (9.1)

where the parameter €2 < 1 is associated with its grayness and z; is related to its
spatial extent. The partially-spatially incoherent dark beam is quasi-monochromatic
and it propagates along z. Furthermore, let the electric eld of all the modes com-
prising this beam be written as E = U(x) exp(i8z) where 3 is the mode propagation
constant. Using Eq. 9.1, the modal function U is then found to obey the following
Helmholtz equation:

%;;[5]_ + (g + fsechz(s)) U=0 (9.2)
where s = z/xz, g = [k3(nd — nolp) — B|2d and f = k2z3e’nslo. In the spirit
of Ref. [83], the next task will be to identify an appropriate modal composition
such that the time averaged intensity I, gives rise to a nonlinear index change

which is self-consistent [98] with the composition assumed in the very beginning. In
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general, Eq. 9.2 exhibits two types of eigenfunctions: radiation modes and bound
modes. As shown schematically in Fig.9.1, bound states are possible whenever
g = —¢ or f > k2(n2 — n,I,), whereas radiation modes require that g = +Q* or
B% < k2(n2 — nylp).

At this point, let us rst assume that the waveguide induced by this dark beam
can only support one bound mode. This latter requirement can be met provided
that the coefficient of the sech?(s) potential is set equal to two, i.e. f = 2 or
z? = 2/(k2e*nyly) [117)],[118]. In this case, all possible modes allowed by Eq. 9.2

are given by (see Appendix F) [119]:

U, = sech(s) (9.3)
U, = Qcos(Qs) — tanh(s) sin(Qs) (9.4)
U., = Qsin(@s) + tanh(s) cos(@s) (9.5)

For f = 2, U, is the only allowed bound state (at ¢> = 1) and the two degenerate
eigenfunctions U, . and U, , are part of the radiation mode continuum. It is impor-
tant to note that U,.. is an even radiation mode whereas U,, is odd. Following these

results, the total electric eld is given by [117],[118]

E = oUs(s)exp(iBy2) (9.6)

+ [ 4QE(Q)Ur (5, Q) +E(Q)Urols, @) exp [i8.(Q)

‘
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Figure 9.1: Eigenvalue diagram associated with a first-order incoherent dark soliton.
The bound state intensity as well as the intensities of the even and odd radiation
modes (at Q = 0.1) are also depicted. The dark stripe on the right shows the spatial
extent of the soliton induced waveguide when £ = 0.5.
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where ¢, and ¢, are modal eld coefficients that in general vary randomly in time
[83],{114)-[116]. In Eq. 9.6, the upper limit of the integral is taken at in nity. As we
will see, Q is typically in the neighborhood of @ = 0, far away from Quax = ko(n3 —
n2Ip)'/?, which in turn justi es the upper limit of this integral. Under incoherent
excitation, the following relationships hold true: <cb,mcg,n> X Omn, <cb?::,o> = 0,
(€¢;) = 0 and (2.(Q)e:(Q") = (€(Q)T,(Q")) x D(Q)6(Q — Q). In other words, the
statistical time expectation value of the c- eld coefficients is zero between different
bound modes and the same applies between bound modes and radiation modes (odd
or even). Furthermore, the odd and even radiation modes are always uncorrelated.
Among the even radiation modes, the ¢, coefficients correlate only for the same
value of Q and this is also true for the odd radiation elds. The last relationship
also implies that the odd and even radiation modes are equally excited at the same
Q (with strength D(Q)). This is because the random source shows no preference
to either odd or even radiation modes. The positive function D(Q) represents a
radiation mode distribution.

By utilizing these latter relationships, the intensity I o< (E(s,z)E*(s,z)) can

then be obtained from Eq. 9.6, i.e.,
I = A%sech?(s) + / D(Q) [@ + tanh?(s)] dQ (9.7)
0

where in Eq. 9.7 we made use of the fact that |U,,e|2 + IUT,,,I2 = Q2 + tanh?(s)
and <|cb|2> o A%. The rst term in Eq. 9.7 arises from the bound mode whereas
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the second one from the combined intensity of odd and even radiation modes. For
self-consistency, it is required that the intensity given by Eq. 9.7 is identical to I,

of Eq. 9.1. This is satis ed provided that,

Io= [ DQ(Q*+1dQ (98)
A? = 0/ D@ [1-X@+D]dQ . (9.9)

The analytical solution given by Eqgs. 9.8 and 9.9 clearly demonstrates that station-
ary incoherent dark solitons indeed exist. This is the rst time we know of, that a
soliton was found to involve a continuum of radiation modes as well as bound states.
Even more importantly, this new class of solitons is gray because of the presence
of even bound and radiation modes. It is evident from Egs. 9.8 and 9.9 that the
radiation mode distribution function D(Q) is by no means unique. In fact, in nitely
many self-consistent solutions can be obtained, depending on the particular choice
of D(Q).

To further illustrate our results, let D(Q) be Boltzmann-like, ie. D(Q) =
Dy exp(—Q/Qo) where Qo represents the Q-width of this distribution. ‘The expo-
nentially decreasing character of D(Q) can be justi ed whenever the angular power
spectrum of the incoherent source decreases with the launch angle [79],[82],[109]. As
a result, more power is expected to be coupled into small-angle (Q =~ 0) radiation

modes than in those at higher @ s. For this speci ¢ choice of D(Q), one quickly
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nds that D0 = (I/Q0)(2Q3%+ 1)~ and that A2 = Iy [1 — €2(2Q3 + 1)] (2Q5 + 1)~ %

Thus, Iy = I, + I, where

Iy

I = IR [1- €2(2Q5 + 1)] sech®(s) (9.10)
I
T 2Q%0+ - [208 41— sech?(s)) (9.11)

In Egs. 9.10 and 9.11, I, is the bound-mode intensity component of the dark inco-
herent soliton and I, is the intensity pro le of the radiation-mode belt. It is also
clear from Eq. 9.10 that this soliton exists provided that 2(2Q%+1) < 1. The com-
plex coherence factor p; 5(s1, s2) [69] of this incoherent soliton can then be obtained

from Eq. 9.6, by evaluating the quantity

(E(s1,2)E*(s3,2)) o< A®sech(s;)sech(s,) (9.12)

+ [ D(@) Wre1)Urals2) + Uno(2)Urofs2)] dQ

In turn, its correlation length can be found from I.(s) = zo j’o |p1,2(s,s + 6)‘2 dé
-00

[109].

9.3 Results and discussion

Let us now physically interpret these results. From the f = 2 condition, one can
deduce that for a given nyly, the width zo of the dark soliton increases with its
grayness. Moreover, it is important to note that Qo de nes the correlation length
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at the tails (s — 00) of this dark incoherent soliton. In these regions, the bound
states disappear and the soliton correlation length is determined by the width Qo
of the radiation mode belt. At the tails, [, decreases as @)y increases and vice versa.
In fact, I in these regions coincides with the correlation length of the source. In
the limit Q, = 0, €2 = 1, Egs. 9.10 and 9.11 reduce to the well known coherent
dark spatial soliton solution [113]. In this case, I, = 0 and the soliton consists of
an odd tanh(s) mode at cut-off with [, = oo everywhere. On the other hand, for
Qo = 0 and €2 # 1, we obtain an incoherently-coupled dark-bright soliton pair,
identical in nature to that previously considered in photorefractive crystals [50],[53]-
From the condition €2(2Q2 + 1) < 1, it is also clear that the dark soliton becomes
more gray as its incoherence increases. Another interesting possibility arises in the
. limit €2(2Q% + 1) = 1. In this case the bound state is empty (I, = 0) and thus the
dark incoherent soliton consists of only radiation modes. As previously noted, the
dark incoherent soliton is actually gray because of the presence of even radiation
and even bound modes. To further illustrate these issues, let us consider a practical
example. Let ng = 2, A\g = 0.5 um and n,Jy, = 1073. Let the soliton grayness be 50%
or €2 = 0.5. These parameters are in fact close to the those previously considered
in photorefractives in Chapters 7 and 8 [109],{110]. In this case, zo ~ 5 um and
this soliton exists for Qu < 1/4/2. Figures 9.2(a) and (b) show the soliton intensity

pro le and correlation length when Qo = 0.4. The correlation length of the source
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~ 13.5 um. The depression in [, at s = 0, is due to the presence of the bound mode.
Figs.9.3(a) and (b) provide the same information when @ = 0.7. This corresponds
to a source correlation length of &~ 5.3 ym and in this case the bound mode is almost
absent. For this reason, [, increases around the dark notch. Overall, the behavior of
the I, and I, curves is in qualitative agreement with the ndings of previous chapters
[109]. From the above results, it becomes apparent, that for our choice of D(Q), the
radiation modes are mostly con ned within a narrow belt around Q =~ 0. Because of
this, the odd radiation modes dominate in the soliton-induced waveguide as shown
schematically in Fig.9.1. This behavior can be easily understood by considering Egs.
9.4 and 9.5 in the neighborhood of s &~ 0 when @ & 0. Thus, in order to effectively
launch this dark incoherent soliton the phase must be properly manipulated so as at
the center (s = 0), the eld distribution is mostly odd. This explains why a 7-phase
shift can greatly facilitate their observation [109],{110]. The even boundb mode will
subsequently appear as a result of evolution.

Similarly, higher-order dark incoherent solitons can be obtained for f = 6,12, 20, ...
[117],[118], [119]. For example, if f = 6, the soliton-induced potential can support
two bound states, i.e. U,; =sech?(s) and U, =sech(s) tanh(s) at ¢ =4 and ¢ = 1

respectively. In this case (f = 6), the radiation modes are given by
U,',e = [1 + Q% - 3tanh2(s)] cos(Qs) — 3Q tanh(s) sin(Qs) (9.13)

U, = [1+Q* — 3tanh’(s)] sin(Qs) + 3Q tanh(s) cos(Qs) - (9.14)
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Thus I, = B2sech?(s) + C2sech®(s) tanh’(s). As in the case of rst-order incoherent
dark solitons, D(Q) is not unique. If we choose however, D(Q) = Dyexp(—Q/Qo),

we nd that Dy = (Ip/2Q0)(12Q4 + 5Q% +2)71,
B? = QoD [(3+6Q3) — 2¢? (12Q4 + 5Q5 + 2)]
and C? = B? + 9Q0D6. The intensity component of the radiation belt is given by
I. = DyQo [2 (12Q8 +5Q3 + 2) + 9sech®(s) — (12 + GQg) sechz(s)] . (9.15)

Again, I,', + I; = I, where I, is given by Eq.9.1. From the above, C' > B and this
soliton is possible provided that B2 > 0. In the limit B = 0, the 1st (even) bound
mode is empty and the soliton involves only radiation modes and the next odd bound
state. Furthermore, for a given degree of grayness and nonlinear index change, the
f = 6 dark soliton is broader than the rst-order one by a factor of V3. Figs.9.4(a)
and (b) depict the intensity pro le and correlation length of such a second-order
incoherent dark soliton, under the same parameters used before when Qo = 0.5,
€? = 0.49 and z, ~ 8.8 um. The source correlation length is 11 um. As shown in
Fig.9.4(b), the correlation length curve now exhibits a richer sub-structure within
the local I, minimum around s =~ 0. This is due to the presence of the additional
odd bound mode. Figs.9.2(b), 9.3(b), and 9.4(b) also suggest that what was found
in the computational study of Chapter 7 was actually a dark incoherent soliton
of the rst-order type. More speci cally, the . curve of the dark quasi-soliton of
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Figure 9.2: (a) Intensity profile and (b) corresponding correlation length curve of a
first-order incoherent dark soliton when €= 0.5 and Q) = 0.4.
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Figure 9.3: (a) Intensity profile and (b) corresponding correlation length curve of a
first-order incoherent dark soliton when € = 0.5 and Qp = 0.7.
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Figure 9.4: (a) Intensity profile and (b) corresponding correlation length curve of a
second-order incoherent dark soliton when £ = 0.49 and Qy = 0.5.
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this chapter was very similar to that of Fig.9.3(b) and had no sub-structure around
s ~ 0 which is characteristic of a higher-order dark soliton state. It is also very
important to note, that in this latter case (f = 6), the narrow (Q ~ 0) radiation
mode belt is dominated by even radiation modes within the waveguide region. On
the other hand, our analysis shows that this second-order dark incoherent soliton
has a strong contribution from the second odd bound state which by the way is never
empty. Such higher order dark solitons can be launched by properly engineering

the input beam in a manner similar to that of Ref. [120]. The modal composition
of even higher-order dark incoherent solitons (f = 12,20,...) can be obtained in a

similar fashion. These results are however more involved.

9.4 Conclusions

In conclusion we have theoretically demonstrated the existence of dark incoherent
spatial solitons in non-instantaneous self-defocusing nonlinear media. These new
dark soliton entities were found to involve radiation modes as well as bound sta;es.
Our results explain for the rst time why these solitons are gray and why a m-phase
shift tends to facilitate their experimental observation. Finally, we emphasize that

our results can be in principle extended in two dimensions, i.e. in the description of

two-dimensional dark incoherent solitons.
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Chapter 10

Conclusions

In this thesis, we have investigated several issues regarding incoherent spatial soli-
tons and their coherence properties. In particular, we have developed two com-
plimentary approaches in order to explain the observed incoherent self-focusing
behavior in biased photorefractive media. The rst one is the so-called coherent
density approach where the underlying evolution model takes the form of a non-
linear Schrodinger-like integro-differential equation provided that at the origin the
coherent density is appropriately scaled with respect to the angular power spectrum
of the incoherent source. The second one is essentially a self-consistent incoher-
ent multimode approach. In brief, in this procedure, an incoherent spatial soliton
is sought, which intensity-wise is a superposition of all the modes self-consistently

guided in its nonlinearly induced waveguide. The numerical simulations resulting
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from these theoretical approaches were found to be in good agreement with the
experimental observations. We wish to emphasize thﬁt our theoretical approaches
apply not only to photorefractive media but also to any other nonlinear system
whose temporal response time is much bigger than the phase uctuation time of the
incoherent beam.

We have shown that under appropriate initial conditions, bright as well as dark-
like incoherent solitons are possible in biased photorefractive crystals. Our numerical
simulations have demonstrated that the coherence properties of these beams are sig-
ni cantly affected by the self-trapping process. More speci cally, in the case of a
bright incoherent beam, we have found that coherence length remains approximately
constant around the center of the beam, whereas it increases at the margins. The in-
crease of the coherence length at the margins of the beam can be explained from the
fact, that away from the center, only the higher order modes contribute to the coher-
ence. Our numerical simulations also show that further increase of the bias voltage
sets the bright beam into cycles of compression and expansion. In this latter case,
the goherence length decreases at the center of the beam during compressioﬁ and it
increases when the beam expands. Our analysis has also demonstrated that a single
dark incoherent soliton can be excited only if initially a m-phase shift is imposed
~ on the incoherent wave front. Moreover, our simulations show that incoherent dark

solitons are in fact gray. In this éase, the coherence length was found to be higher
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within the dark notch, with a depression at the center. Th dynamics of incoherent
dark solitons have been studied under different initial conditions. Depending on the
initial conditions, an even or an odd number of incoherent dark-like structures can
be obtained in self-defocusing media. It is important to note that the behavior of
bright/dark incoherent solitons is fundamentally different from that of their coher-
ent counterparts. For example, unlike a coherent gray soliton, an incoherent dark
soliton does not exhibit a transverse velocity in spite of its grayness. Furthermore,
we have shown that the evolution of incoherent dark solitons in non-instantaneous
nonlinear media is associated with strong phase-memory effects which are other-
wise absent in the linear regime. The higher-order behavior of these dark beams
have been compared under the same initial conditions but for different degrees of
coherence. It was found that over a wide range of parameters, the Y-splitting is
approximately the same irrespective of the initial spatial coherence. Experimental
observations are in good agreement with our theoretical predictions.

In addition to bright solitons in photorefractive media, we have shown that par-
tially incoherent spatial solitons are also possible in other saturable nonlinear media.
An exact Gaussian solution was obtained in the case where the nonlinearity is of
the logarithmic type. We found that these incoherent Gaussian solitons can exist
as long as their spatial width is appropriately interrelated with the strength of the

nonlinearity and the width of the incoherent angular power spectrum of the source.
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The behavior of these beams above and below this limit was also investigated us-
ing computer simulations. By using the self-consistent multimode approach, we
have shown that incoherent spatial solitons in logarithmically saturable nonlinear
media are multimoded. These solitons can exist as long as their mode-occupancy
function obeys a Poisson distribution. We have found that two épproaches, that is
the dynamic coherent density description as well as the self-consistent multimode
method lead in this case to exactly the same results. Even though the saturable
logarithmic nonlinearity differs from the photorefractive, it provides nevertheless a
platform (perhaps the only platform) upon which the equivalence of the two previ-
ously mentioned approaches can be established in closed form. In the same vein, we
have shown that two dimensional incoherent Gaussian solitons can also exist in this
nonlinear system. Moreover, these incoherent solitons can be elliptical or circular
depending on whether the angular power spectrum of the incoherent source is sym-
metric or not. The possibility of generating two dimensional elliptical solitons in
isotropic nonlinear media seemé to be unique to incoherent multimode solitons, since
it has been shown that their elliptical coherent counterparts change their widths pe-
riodically during propagation.

We have also shown that multimode incoherent spatial solitons are possible in
non-instantaneous Kerr-like media. Closed form solutions were obtained using the

self-consistency method provided that their intensity pro le is of the sech? (z/zo)
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type. The coherence properties of these incoherent soliton states were also investi-
gated in detail and explained by means of their modal composition. Note that the
cross-sections of the complex coherence factor p,, were very different in character
from those found in the case of logarithmically saturable nonlinear media. In Log
systems, the statistical process is everywhere stationary, i.e. p;, depends only on
§ and it is Gaussian in nature. For the Kerr case, the coherence curves depend
also on the position 7 and do not always go to zero as § — £oo. This feature was
also encountered in saturable Kerr media of the type I/(1+ I). This important
difference is due to the nite number of modes associated with the Kerr incoherent
solitons. In particular, the induced waveguides in Kerr and Kerr-saturable media
exhibit cutoffs ( nite number of modes) whereas the logarithmic one does not.
Finally, we have theoretically demonstrated the existence of dark incoherept
spatial solitons in non-instantaneous self-defocusing nonlinear media of the Kerr
type. These dark soliton entities were found to involve radiation modes as well
as bound states. The presence of even radiation and bound modes explains why
these structures are in fact gray. Moreover, we have found that the odd radiation
modes dominate within the dark region of the beam (for rst-order incoherent dark
beams), which justi es the m-phase shift required to excite these dark incoherent
soliton states. Thus, in order to effectively launch dark incoherent solitons the

phase must be properly manipulated so as at the center, the eld distribution is
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mostly odd. The even bound mode subsequently appears as a result of evolution
The coherence properties of these solitons were also considered and they were found
to be in good agreement with the results of numerical simulations in the case of
photorefractive nonlinearity. The existence of such incoherent dark solitons was
later veri ed experimentally.

In closing, we would like to note that other issues may also merit further investi-
gation. For example, as in the coherent case, the dynamics of two dimensional Log
type incoherent bright solitons can b;e described in closed form. Furthermore, our
results for one dimensional incoherent dark solitons can be in principle extended
in two dimensions to analyze two-dimensional dark incoherent solitons. Detailed
investigations of coherent and incoherent soliton collisions might be another inter-
esting avenue for future studies. The outcome of collisions from incoherent beams
is expected to be more involved since incoherent beams are multimoded. It also
remains to be seen how one can control the coherence of an optical beam by using

incoherent beams.
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Appendix A

Normalized mode functions

In this Appendix we provide the normalized mode functions @ (). Here we de ne
T = tanh (1) and S = sech(n). The %™ (n) functions appear in accord to their modal

order (lowest order mode rst).

Forn=1:
HOEE] (A1)
For n = 2:
uf% (n) = 5 (A2)
Uy () = ST (A.3)
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For n = 3:

@3 (n) = /15/165°
@ (n) = /5/25°T

@ (n) = (1/4) S (4 - 55%)

For n = 4:
@ (n) = /7/85"
i () = (3/4) VTS°T
@ (n) = (v2/4) $* (6 — 75°)
@ (n) = (1/4) ST (4 - 78?)
For n = 5:

@ (n) = (v210/16) S°
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(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)




@ (n) = (1/2)V218'T (A.12)

@ (n) = (V42/16) S* (8 — 957) (A.13)
@ (n). = (V7/2) §°T (2 - 35%) (A.14)
@ (1) = (1/8) 5 (8 — 2882 + 215*) (A.15)
For n = 6:
8 (n) = (3/16) V225° (A.16)
@ (n) = (5/16) V66S°T (A.17)
a4 (n) = (V3/4) $* (10 — 115%) (A.18)
a3 (n) = (3/16) V10S°T (8 — 115?) (A.19)
@ (n) = (V10/16) S (16 — 485” + 335*) (A.20)
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@ (n) = (1/8) ST (8 — 365" + 335") (A.21)
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Appendix B

Complex coherence factors

In this Appendix, the functional form of the complex coherence factors p,, is pro-

vided up to n = 5. Again we have de ned T () = tanh (n) and S (n) = sech(n).

For n = 1:
bz (mn+8) =1 (B.1)

For n = 2:
pe(mn+6) =TT (n+6+SmSn+6) (B.2)

For n = 3:
p2(mn+6) = 1+(5/2){S(n)S (n+6) (B.3)
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X [T(n)T (n+6)+Sm)S(n+6) (B4)

—(1/2) [$%(n) + 5* (n +8)]}

For n = 4:

L (1/4)[S () + 5% (n + 6)] ]
(B.5)

prp(mn+8) = T()T(n+6)
' +78% (n) §% (n + 6)

9/2 — (21/4) [S? 52 )
+S()S (n+6) /2 —(21/4)[S? () + S? (n + 6)]
+75% (1) S% (n + 6)
For n = 5:
g (mm+8) = 1+7{T ()T (n+86)S(n)S(n+6) (B.6)

x[1 = (3/2) (8> (n) + 8% (n + 6)) + 35" (1) 8° (0 + §)]
—(1/2) (S (n) + S2 (1 + 6)) + (3/8) ($* (m) + S* (n + )
13/4 -3 (5% (n) + S? (n + b)) ]}

+5% (1) 8% (n + 6)
+352(n) 8% (n + 6)

176




Appendix C

Diffraction equations of

Gauss-Hermite beams

This Appendix details the steps that lead to the diffraction equation of Gauss-
Hermite beams.
An optical beam propagates in a linear material by obeying the following differ-
ential equation:
OU 16U

'l-a—g + 5&7 =0 (Cl)

where the normalized coordinates are € = z/kxo, s = z/%o, and k = kono is the
wavenumber in this material. Let as assume that at £ = 0 the optical eld is given

by U, = Apexp{—s*/2} Hn (s) where H,, are Hermite functions. Now, let the
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diffraction solution be

U = A () exp {—5*/2" (€)} Hm (s/w (©)) exp {i [} () + F(©) ]} (C2)

where A, w, 0, F are real functions. Substituting this solution into Equation C.1

gives

5
+2 [——-35 + z'2Fs] H. (3) L= (i)}
w w w w w

where A = dA/d¢, etc., H., (n) = dHn/dn, Hi (n) = d*Hp/dn® where n = s/w.

From the imaginary part of this equation we get

[A+ FA] Ho+ [25 - ﬂ] AH! s — [ £_ -“-’—] AH,?=0  (C.4)
w  w? w Wl
By equating the coefficients of the s-polynomial to zero we get
A+FA=0 (C.5)

and

w

— =2F .

- (C.6)
From the real part of Equation C.3 we obtain

~AHn, (6 + Fs2) + [—fis"’ — 2AF%s% — i] Hn =5~ H! — =

A [ 2s
2wt 2w?

H;n] —0 (C.7)
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This relation can be further simpli ed by using the following de nition

d*H,, dH,,
-9 =_ - .
e n an 2mH, (C.8)

and we end up with

% nIw 1 2 2 .2 1 1 _
—(0+Fs)AHm+[ﬂs ~ 2P = =S| Al — —mAHn =0 (C9)
Thus
0= i(1+2 ) (C.10)
= 2w2 m :
Faor?— L —o (C.11)
2wt
A%w = constant = A2 (C.12)

where we assume that the initial spot size wp is equal to 1,i.e. w (£ =0) = 1. Eq.C.6

can be written in the following form

1 d/,
Substituting this result into Equation C.11, we obtain the following relationship
w=—. (C.14)

From this equation one can solve for w. This is given by

w()=(1+ 52)1/2 (C.15)
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Furthermore, using this solution in Eq.C.10, one may calculate the phase accumu-

lated 6 (£):
2m+1

8(¢) = — tant (€) + 6 (C.16)

where 6, is the initial value of the phase associated with this beam. Again substi-
tuting Eq.C.15 into Eq.C.12 one directly nds the amplitude of the diffracting mode

which is given by

Ao Ao
Te@7 (1+e)"
One can also nd the function F (£) by substituting Eq. C.15 into Eq. F.11 to get

A(§) (C.17)

_ ¢
F(§)= 211 8) (C.18)

Substituting A, w, 8, F into Eq. C.2 and taking the absolute value square, the

intensity of a diffracting Gauss-Hermite beam is given by:

|um (§)|2 — __f_lgTﬂ exp {——§—2—2} H,Zn —'—S‘Tﬁ . (C.lg)
(1+¢) 1+¢ (1+€2)

In general, if the initial value of the spot size is not unity, i.e. w # wo at £ = 0,

Eqs.C.15 takes the foﬂowing form
2, 4\1/2
w (€) = wo (1 +€/wi) B ()

and the diffracting beam is given by

A s $
|t (6)? = —————75 € {—————2 27 4 }an( 12)
T L W (o) e W
(C.21)
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Appendix D

Intensity and coherence function

of incoherent Gaussian beams

In this Appendix, by using modal description, we compute the time-averaged in-
tensity and complex coherence function of an incoherent Gaussian beam during
diffraction.
The optical eld of an incoherent Gaussian beam can be expressed through
superposition, i.e., U = §0 CnUm. Here the Gauss-Hermite modes at £ = 0 are
me

given by

U = Hypy (a1/2s) exp (—a32/2) (D.1)
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at £ = 0 whereas they are

1 a 8
- = e e -

x H,, (_a_l/:’{_l_) exp {’L |:9 &) + —-——9—26—-32} }
(1 N a2£2) /2 2 [1 + a2£2]
at € # 0 from Appendix C. Furthermore, ¢, are the mode-occupancy coefficients
that vary randomly in time and let the mode-occupancy be described by a Poisson
distribution, that is <|cm|2> = 7exp (—p/2) (p/2)™ /m! where p is the Poisson para-
meter and 7 = r (1 — p?) exp —p/2 is a constant. The time-average intensity of this

beam can then be obtained from

Io = (UP) = ¥ (lenl?) funl? (D.3)

m=0

where we made use of the fact that the time average of the cross-interference terms is
Z€ero (<c,c;‘> 6;;) under incoherent excitation. Therefore, the time-average intensity

of this multimoded beam during linear diffraction is given by

_ s P\ « (/2" 1
Ip = Texp(—§>mzz:0 m! (1+a2§2)1/2 (D'4)

as? all?s
X exp {—m} H'r2n (m) (D5)

This expression can be simpli ed, by using Mehler s formula:

Z Q{n?_')—H?" (a:) = (1 _12)1/2 €xp {2t$1 : i2t - } (D-G)

m=0
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where t < 1. Thus as a result one nds

T as? 2p
e s I I

Knowing that a (1 — p) /(1 + p) = 1, we further simplify Eq.D.7 which gives

T s
ID:WGXP{_W} . (D8)

The coherence function is de ned as follows:

(U (51,§) U* (52,6)) (D.9)
[Ip (s1,€) Ip (82, 6)]"*

[55P) (31,32,5) =

Therefore, in our case

(U (50,6) U* (52,6)) = <icmum<sl,s>zc sz,s)> (D.10)

m= n=0

. i(lcml Vet (51,6) 5, (52,)

since the time average of the cross-interference terms is zero. Substituting the
functional form of u,, (s1,£) and u}, (s2, ) into above equations, and by using again
Mehler s Formula, and after some simpli cation, we obtain the following complex

coherence function

12(8,6,6) =exp{ — 2l }ex {__a2(62+235)£} D.11
f12 (8, 6,€) P{ A= (L5 € p 12(1+a2§2) (D.11)

where s = s; and 6 = sy — 5.
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Appendix E

Diffraction of an incoherent

Gaussian beam

In this Appendix, by using coherent density approach, we analyze the diffraction of
an incoherent Gaussian beam.

The diffraction equation in normalized coordinates and quantities is given by:

| 0f of 16%f _
2 [_3—6_ + a-(%] + 55:;5 =0 (El)

where s = x/x0, £ = z/kxo, k = kono, and o = kxof. Now let § = Candn=s—af.

After this transformation, the above equation takes the following form

of 10%f
’L-é‘C--FEW—O (E2)
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Let at the input, the coherent density function be given by
-1/2
F(¢=0,m) =rexp (—n?/2) (Vo) exp (—6°/267) .

Therefore at ¢ # 0, the intensity of this function evolves according to following

expression
2
r Ui
£l = ex» (~177) ®3)
Vit (1+¢3)" 1+¢
or
T (s — af)?
£ €00 = v (<4555 (®.4)
Vo (1+¢)7" 1+¢
The total intensity of the incoherent beam can be calculated from Ip = |U I =

_T |f (s,€,0)|% df. Substituting Eq.E.4 into this latter equation gives

o2 2 +00
ID=Texp[ /(1 J:/f ) d)\exp{—)\2 <1+(1+Z2)g2) +)\2SV§2} (E.5)
VT (1+¢%) s 1+¢ 1+¢

where V = kxzofp and A = 6/6,. The integral of the above expression can be
simpli ed by using ofo exp (—a2a? + bz) = 7'/ /aexp (b%/4a?). Therefore, the total

intensity of a incoherent Gaussian beam during diffraction is given by

r

Ip = expi — o E.
P [1+(1+V2)§2]‘/2 p{ [1+(1+V2)£2]} (E8)
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Appendix F

Radiation modes

In this Appendix, we compute the radiation modes of the Helmholtz equation when
the potential is of the sech? (s) type.
- In this case, the Helmholtz equation is given by

d2U

2 _
-ds—2+[g+fsech (s)|U=0 (F.1)
where g is required to be a positive number, i.e. g = Q?, for radiation modes. We
assume that the induced waveguide can support only one bound mode, i.e. f = 2.

In that case this equation takes the following form

d*U

-+ [@* + 2sech? (s)|U=0. (F.2)

To nd the odd radiation modes, let us assume that

U= U, = F(s)cos(Qs) + G (s)sin (Qs) (F.3)
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After substituting this solution into Equation F.2 and by selecting the cos (Qs)
terms we nd

F+20QG +2sech?(s) F =0 (F.4)

whereas by selecting sin (Qs) terms we get
G —2QF + 2sech®(s)G =0 (F.5)

Let G = Gy is a constant. Therefore Eqs.F.5 and F.4 can be simpli ed to give

F+2sech?(s) F=0 (F.6)
__QF
®™ sech?(s) (F-7)
or |
sech? (s) = %? (F.8)

Substituting Eq.F.8 into Eq.F.6 results with the following relation

F+ ng F=0 (F.9)

0

Integrating the last equation once yields

P+ 2p_c (F.10)
Go

Moreover, from its asymptotic behavior we know that F (s — £o0o0) = =+l and

F (s — +o00) = 0. The constant C can be found by using these boundary con-

ditions and letting Go = Q and it is C = 1. Now, Eq.F.10 can be integrated one
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more time to nd F (s) which is given by
F (s) = tanh(s) . (F.11)

Finally, substituting the functional form of F'(s) and constant value of G = Q into
Eq.F.3 yields

U, = Qsin (Qs) + tanh (s) cos (Qs) . (F.12)

The even radiation modes can be generated from the odd one by letting U, = vU,

and by using variation of parameters. By doing so, we nd

ds ds
Uero/U—gorzx=/U—3 (F.13)

and

ds

U, = [@sin (Qs) + tanh (s) cos (Qs)) / Q5in (03) T tanb (5) 005 (Q5)]° (F.14)
Therefore the even radiation modes are given by
U, = Qcos(Qs) — tanh (s) sin (Qs) (F.15)

Since U,U, — U,U. = —Q* — Q # 0 these two degenerate modes are linearly inde-

pendent. Moreover U2 + U2 = Q2 + 1, i.e. constant, at s — £o0.
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